楼主: sophiaxie
3403 3

[推荐]2007-Introduction to Categorical Data Analysis [推广有奖]

  • 2关注
  • 2粉丝

已卖:719份资源

硕士生

68%

还不是VIP/贵宾

-

威望
0
论坛币
4973 个
通用积分
155.9866
学术水平
8 点
热心指数
8 点
信用等级
7 点
经验
2420 点
帖子
100
精华
0
在线时间
203 小时
注册时间
2007-12-5
最后登录
2025-4-22

楼主
sophiaxie 在职认证  发表于 2009-3-12 09:29:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

302725.pdf (2.51 MB, 需要: 50 个论坛币)

[/UseMoney]

An Introduction to Categorical Data Analysis

Second Edition

ALAN AGRESTI

Department of Statistics

University of Florida

Gainesville, Florida

1. Introduction 1

1.1 Categorical Response Data, 1

1.1.1 Response/Explanatory Variable Distinction, 2

1.1.2 Nominal/Ordinal Scale Distinction, 2

1.1.3 Organization of this Book, 3

1.2 Probability Distributions for Categorical Data, 3

1.2.1 Binomial Distribution, 4

1.2.2 Multinomial Distribution, 5

1.3 Statistical Inference for a Proportion, 6

1.3.1 Likelihood Function and Maximum Likelihood Estimation, 6

1.3.2 Significance Test About a Binomial Proportion, 8

1.3.3 Example: Survey Results on Legalizing Abortion, 8

1.3.4 Confidence Intervals for a Binomial Proportion, 9

1.4 More on Statistical Inference for Discrete Data, 11

1.4.1 Wald, Likelihood-Ratio, and Score Inference, 11

1.4.2 Wald, Score, and Likelihood-Ratio Inference for

Binomial Parameter, 12

1.4.3 Small-Sample Binomial Inference, 13

1.4.4 Small-Sample Discrete Inference is Conservative, 14

1.4.5 Inference Based on the Mid P-value, 15

1.4.6 Summary, 16

Problems, 16

1.4.6 Summary, 16

Problems, 16

1.1.3 Organization of this Book, 3

1.2 Probability Distributions for Categorical Data, 3

1.2.1 Binomial Distribution, 4

1.2.2 Multinomial Distribution, 5

1.3 Statistical Inference for a Proportion, 6

1.3.1 Likelihood Function and Maximum Likelihood Estimation, 6

1.3.2 Significance Test About a Binomial Proportion, 8

1.3.3 Example: Survey Results on Legalizing Abortion, 8

1.3.4 Confidence Intervals for a Binomial Proportion, 9

1.4 More on Statistical Inference for Discrete Data, 11

1.4.1 Wald, Likelihood-Ratio, and Score Inference, 11

1.4.2 Wald, Score, and Likelihood-Ratio Inference for

Binomial Parameter, 12

1.4.3 Small-Sample Binomial Inference, 13

1.4.4 Small-Sample Discrete Inference is Conservative, 14

1.4.5 Inference Based on the Mid P-value, 15

1.4.6 Summary, 16

Problems, 16

1.4.6 Summary, 16

Problems, 16

1.1.2 Nominal/Ordinal Scale Distinction, 2

1.1.3 Organization of this Book, 3

1.2 Probability Distributions for Categorical Data, 3

1.2.1 Binomial Distribution, 4

1.2.2 Multinomial Distribution, 5

1.3 Statistical Inference for a Proportion, 6

1.3.1 Likelihood Function and Maximum Likelihood Estimation, 6

1.3.2 Significance Test About a Binomial Proportion, 8

1.3.3 Example: Survey Results on Legalizing Abortion, 8

1.3.4 Confidence Intervals for a Binomial Proportion, 9

1.4 More on Statistical Inference for Discrete Data, 11

1.4.1 Wald, Likelihood-Ratio, and Score Inference, 11

1.4.2 Wald, Score, and Likelihood-Ratio Inference for

Binomial Parameter, 12

1.4.3 Small-Sample Binomial Inference, 13

1.4.4 Small-Sample Discrete Inference is Conservative, 14

1.4.5 Inference Based on the Mid P-value, 15

1.4.6 Summary, 16

Problems, 16

1.4.6 Summary, 16

Problems, 16

1.1.3 Organization of this Book, 3

1.2 Probability Distributions for Categorical Data, 3

1.2.1 Binomial Distribution, 4

1.2.2 Multinomial Distribution, 5

1.3 Statistical Inference for a Proportion, 6

1.3.1 Likelihood Function and Maximum Likelihood Estimation, 6

1.3.2 Significance Test About a Binomial Proportion, 8

1.3.3 Example: Survey Results on Legalizing Abortion, 8

1.3.4 Confidence Intervals for a Binomial Proportion, 9

1.4 More on Statistical Inference for Discrete Data, 11

1.4.1 Wald, Likelihood-Ratio, and Score Inference, 11

1.4.2 Wald, Score, and Likelihood-Ratio Inference for

Binomial Parameter, 12

1.4.3 Small-Sample Binomial Inference, 13

1.4.4 Small-Sample Discrete Inference is Conservative, 14

1.4.5 Inference Based on the Mid P-value, 15

1.4.6 Summary, 16

Problems, 16

1.4.6 Summary, 16

Problems, 16

/Explanatory Variable Distinction, 2

1.1.2 Nominal/Ordinal Scale Distinction, 2

1.1.3 Organization of this Book, 3

1.2 Probability Distributions for Categorical Data, 3

1.2.1 Binomial Distribution, 4

1.2.2 Multinomial Distribution, 5

1.3 Statistical Inference for a Proportion, 6

1.3.1 Likelihood Function and Maximum Likelihood Estimation, 6

1.3.2 Significance Test About a Binomial Proportion, 8

1.3.3 Example: Survey Results on Legalizing Abortion, 8

1.3.4 Confidence Intervals for a Binomial Proportion, 9

1.4 More on Statistical Inference for Discrete Data, 11

1.4.1 Wald, Likelihood-Ratio, and Score Inference, 11

1.4.2 Wald, Score, and Likelihood-Ratio Inference for

Binomial Parameter, 12

1.4.3 Small-Sample Binomial Inference, 13

1.4.4 Small-Sample Discrete Inference is Conservative, 14

1.4.5 Inference Based on the Mid P-value, 15

1.4.6 Summary, 16

Problems, 16

1.4.6 Summary, 16

Problems, 16

1.1.3 Organization of this Book, 3

1.2 Probability Distributions for Categorical Data, 3

1.2.1 Binomial Distribution, 4

1.2.2 Multinomial Distribution, 5

1.3 Statistical Inference for a Proportion, 6

1.3.1 Likelihood Function and Maximum Likelihood Estimation, 6

1.3.2 Significance Test About a Binomial Proportion, 8

1.3.3 Example: Survey Results on Legalizing Abortion, 8

1.3.4 Confidence Intervals for a Binomial Proportion, 9

1.4 More on Statistical Inference for Discrete Data, 11

1.4.1 Wald, Likelihood-Ratio, and Score Inference, 11

1.4.2 Wald, Score, and Likelihood-Ratio Inference for

Binomial Parameter, 12

1.4.3 Small-Sample Binomial Inference, 13

1.4.4 Small-Sample Discrete Inference is Conservative, 14

1.4.5 Inference Based on the Mid P-value, 15

1.4.6 Summary, 16

Problems, 16

1.4.6 Summary, 16

Problems, 16

/Ordinal Scale Distinction, 2

1.1.3 Organization of this Book, 3

1.2 Probability Distributions for Categorical Data, 3

1.2.1 Binomial Distribution, 4

1.2.2 Multinomial Distribution, 5

1.3 Statistical Inference for a Proportion, 6

1.3.1 Likelihood Function and Maximum Likelihood Estimation, 6

1.3.2 Significance Test About a Binomial Proportion, 8

1.3.3 Example: Survey Results on Legalizing Abortion, 8

1.3.4 Confidence Intervals for a Binomial Proportion, 9

1.4 More on Statistical Inference for Discrete Data, 11

1.4.1 Wald, Likelihood-Ratio, and Score Inference, 11

1.4.2 Wald, Score, and Likelihood-Ratio Inference for

Binomial Parameter, 12

1.4.3 Small-Sample Binomial Inference, 13

1.4.4 Small-Sample Discrete Inference is Conservative, 14

1.4.5 Inference Based on the Mid P-value, 15

1.4.6 Summary, 16

Problems, 16

1.4.6 Summary, 16

Problems, 16

P-value, 15

1.4.6 Summary, 16

Problems, 16

2. Contingency Tables 21

2.1 Probability Structure for Contingency Tables, 21

2.1.1 Joint, Marginal, and Conditional Probabilities, 22

2.1.2 Example: Belief in Afterlife, 22

3. Generalized Linear Models 65

3.1 Components of a Generalized Linear Model, 66

3.1.1 Random Component, 66

3.1.2 Systematic Component, 66

3.1.3 Link Function, 66

3.1.4 Normal GLM, 67

3.2 Generalized Linear Models for Binary Data, 68

3.2.1 Linear Probability Model, 68

3.2.2 Example: Snoring and Heart Disease, 69

3.2.3 Logistic Regression Model, 70

3.2.4 Probit Regression Model, 72

3.2.5 Binary Regression and Cumulative Distribution

Functions, 72

3.3 Generalized Linear Models for Count Data, 74

3.3.1 Poisson Regression, 75

3.3.2 Example: Female Horseshoe Crabs and their Satellites, 75

3.3.3 Overdispersion: Greater Variability than Expected, 80

3.3.4 Negative Binomial Regression, 81

3.3.5 Count Regression for Rate Data, 82

3.3.6 Example: British Train Accidents over Time, 83

3.4 Statistical Inference and Model Checking, 84

3.4.1 Inference about Model Parameters, 84

3.4.2 Example: Snoring and Heart Disease Revisited, 85

3.4.3 The Deviance, 85

3.4.4 Model Comparison Using the Deviance, 86

3.4.5 Residuals Comparing Observations to the Model Fit, 87

3.5 Fitting Generalized Linear Models, 88

3.5.1 The Newton–Raphson Algorithm Fits GLMs, 88

3.5.2 Wald, Likelihood-Ratio, and Score Inference Use the

Likelihood Function, 89

3.5.3 Advantages of GLMs, 90 .................

11. A Historical Tour of Categorical Data Analysis 325

11.1 The Pearson–Yule Association Controversy, 325

11.2 R. A. Fisher’s Contributions, 326

11.3 Logistic Regression, 328

11.4 Multiway Contingency Tables and Loglinear Models, 329

11.5 Final Comments, 331

共计11章, 388页

[UseMoney=50]

[此贴子已经被作者于2009-3-12 9:30:12编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:introduction Categorical troduction Analysis Analysi 推荐 Analysis Data Categorical

本帖被以下文库推荐

沙发
cbuilder163(未真实交易用户) 发表于 2009-4-28 16:15:00
Thanks ~~~~

藤椅
ybddc(未真实交易用户) 发表于 2009-5-31 11:46:00

Thanks for sharing.

板凳
jennyli1346(未真实交易用户) 发表于 2010-2-3 00:39:54
too expensive!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-31 14:03