winbugs进行网络meta,模型、数据以及初始值加载正确,点击update不迭代,直接跳出trap错误弹框,请路过的各位大神指教,谢谢!弹框和模型如图和附件
model {
for(i in 1:ns) {
w[i,1]<- 0
delta[i,t[i,1]]<- 0
#Binomial Likelihood#
for (k in 1:na[i]) {
r[i,t[i,k]] ~ dbin(p[i,t[i,k]],n[i,t[i,k]])
}
#Parameterization of the model#
logit(p[i,t[i,1]])<- mu[i]
for (k in 2:na[i]) {
logit(p[i,t[i,k]])<- mu[i] + delta[i,t[i,k]]
delta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],taud[i,t[i,k]])
taud[i,t[i,k]]<- tau *2*(k-1)/k
md[i,t[i,k]]<- d[t[i,k]] - d[t[i,1]] + sw[i,k]
w[i,k]<- (delta[i,t[i,k]] - d[t[i,k]] + d[t[i,1]])
sw[i,k]<- sum(w[i,1:k-1])/(k-1)
}
}
#Priors#
sd ~ dnorm(0,1)I(0,1)
tau<- 1/pow(sd,2)
for(k in 1:(ref-1)) {
d[k] ~ dnorm(0,.0001)
}
for(k in (ref+1):nt) {
d[k] ~ dnorm(0,.0001)
}
for(i in 1:ns) {
mu[i] ~ dnorm(0,.0001)
}
#Estimated & Predicted Odds Ratios#
d[ref]<- 0
for (c in 1:(ref-1)) {
OR.ref[c]<- exp(d[c] - d[ref])
LOR.ref[c]<- d[c] - d[ref]
predLOR.ref[c] ~ dnorm(LOR.ref[c],tau)
predOR.ref[c]<- exp(predLOR.ref[c])
}
for (c in (ref+1):nt) {
OR.ref[c]<- exp(d[c] - d[ref])
LOR.ref[c]<- d[c] - d[ref]
predLOR.ref[c] ~ dnorm(LOR.ref[c],tau)
predOR.ref[c]<- exp(predLOR.ref[c])
}
for(i in 1:(nt-1)) {
for (j in (i+1):nt) {
OR[i,j]<- exp(d[i] - d[j])
LOR[i,j]<- d[i] - d[j]
predLOR[i,j] ~ dnorm(LOR[i,j],tau)
predOR[i,j]<- exp(predLOR[i,j])
}
}
#Ranking of treatments#
for(k in 1:nt) {
order[k]<- rank(d[],k)
# this is when the outcome is positive - omit 'nt+1-' when the outcome is negative
most.effective[k]<-equals(order[k],1)
for(j in 1:nt) {
effectiveness[k,j]<- equals(order[k],j)
}
}
for(k in 1:nt) {
for(j in 1:nt) {
cumeffectiveness[k,j]<- sum(effectiveness[k,1:j])
}
}
#SUCRAS#
for(k in 1:nt) {
SUCRA[k]<- sum(cumeffectiveness[k,1:(nt-1)]) /(nt-1)
}
#Fit of the Model#
for(i in 1:ns) {
for (k in 1:na[i]) {
Darm[i,k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/ r[i,t[i,k]])+(n[i,t[i,k]] - r[i,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]* p[i,t[i,k]])/(n[i,t[i,k]]- r[i,t[i,k]])))
}
D[i]<- sum(Darm[i,1:na[i]])
}
D.bar<- sum(D[])
}
#data#
list(ns = 11 , nt=9, ref=9,
r = structure(.Data=c(1,NA,NA,NA,NA,NA,NA,NA,1,
NA,4,NA,NA,NA,NA,NA,NA,7,
NA,NA,5,NA,NA,NA,NA,NA,4,
NA,NA,NA,9,NA,NA,NA,NA,9,
NA,NA,NA,14,NA,NA,NA,12,9,
NA,NA,4,NA,NA,NA,NA,NA,2,
NA,NA,NA,NA,5,NA,NA,NA,2,
NA,NA,NA,NA,NA,4,NA,NA,3,
NA,NA,NA,11,NA,NA,NA,9,3,
NA,NA,NA,NA,NA,NA,13,NA,12,
NA,NA,NA,2,NA,NA,NA,NA,1),.Dim=c( 11, 9 )),
n = structure(.Data=c(36,1,1,1,1,1,1,1,32,
1,45,1,1,1,1,1,1,43,
1,1,20,1,1,1,1,1,20,
1,1,1,33,1,1,1,1,33,
1,1,1,62,1,1,1,54,32,
1,1,7,1,1,1,1,1,6,
1,1,1,1,72,1,1,1,71,
1,1,1,1,1,37,1,1,37,
1,1,1,36,1,1,1,35,13,
1,1,1,1,1,1,17,1,15,
1,1,1,18,1,1,1,1,15),.Dim=c( 11, 9 )),
na=c(2,2,2,2,3,2,2,2,3,2,2),
t=structure(.Data=c(1,9,NA,2,9,NA,3,9,NA,4,9,NA,4,8,9,3,9,NA,5,9,NA,6,9,NA,4,8,9,7,9,NA,4,9,NA),.Dim=c(11,3))
)


雷达卡






京公网安备 11010802022788号







