楼主: igs816
3903 30

Pro Spark Streaming: The Zen of Real-Time Analytics Using Apache Spark [推广有奖]

已卖:261246份资源

泰斗

6%

还不是VIP/贵宾

-

威望
9
论坛币
1762873 个
通用积分
20526.5467
学术水平
2754 点
热心指数
3477 点
信用等级
2565 点
经验
485149 点
帖子
5457
精华
52
在线时间
3910 小时
注册时间
2007-8-6
最后登录
2026-1-1

高级学术勋章 特级学术勋章 高级信用勋章 特级信用勋章 高级热心勋章 特级热心勋章

楼主
igs816 在职认证  发表于 2016-6-16 13:08:07 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
th_g0wP5cQXW5J5c8VVpVDphbn7agJWlWMB.jpg
Pro Spark Streaming: The Zen of Real-Time Analytics Using Apache Spark  
Apress | Computer Science | July 15, 2016 | ISBN-10: 1484214803 | 231 pages | pdf | 13.41 mb
                                                

Authors: Nabi, Zubair
First book (to the best of the author’s knowledge) to target Spark Streaming

Learn the right cutting-edge skills and knowledge to leverage Spark Streaming to implement a wide array of real-time, streaming applications. Pro Spark Streaming walks you through end-to-end real-time application development using real-world applications, data, and code. Taking an application-first approach, each chapter introduces use cases from a specific industry and uses publicly available datasets from that domain to unravel the intricacies of production-grade design and implementation. The domains covered in the book include social media, the sharing economy, finance, online advertising, telecommunication, and IoT.
In the last few years, Spark has become synonymous with big data processing. DStreams enhance the underlying Spark processing engine to support streaming analysis with a novel micro-batch processing model. Pro Spark Streaming by Zubair Nabi will enable you to become a specialist of latency sensitive applications by leveraging the key features of DStreams, micro-batch processing, and functional programming. To this end, the book includes ready-to-deploy examples and actual code. Pro Spark Streaming will act as the bible of Spark Streaming.
What You'll Learn:
Spark Streaming application development and best practices
Low-level details of discretized streams
The application and vitality of streaming analytics to a number of industries and domains
Optimization of production-grade deployments of Spark Streaming via configuration recipes and instrumentation using Graphite, collectd, and Nagios
Ingestion of data from disparate sources including MQTT, Flume, Kafka, Twitter, and a custom HTTP receiver
Integration and coupling with HBase, Cassandra, and Redis
Design patterns for side-effects and maintaining state across the Spark Streaming micro-batch model
Real-time and scalable ETL using data frames, SparkSQL, Hive, and SparkR
Streaming machine learning, predictive analytics, and recommendations
Meshing batch processing with stream processing via the Lambda architecture
Who This Book Is For:
The audience includes data scientists, big data experts, BI analysts, and data architects.

Number of Illustrations and Tables
7 b/w illustrations, 61 illustrations in colour
Topics
Computer Appl. in Administrative Data Processing
Data Mining and Knowledge Discovery

本帖隐藏的内容

Pro Spark Streaming - The Zen of Real-Time Analytics Using Apache Spark.pdf (13.41 MB, 需要: 5 个论坛币)



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Apache Spark Real-time streaming Analytics Analytic knowledge streaming through target

已有 2 人评分经验 论坛币 学术水平 热心指数 信用等级 收起 理由
fantuanxiaot + 55 + 55 精彩帖子
Nicolle + 100 + 1 + 1 + 1 精彩帖子

总评分: 经验 + 155  论坛币 + 55  学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

本帖被以下文库推荐

沙发
soccy(真实交易用户) 发表于 2016-6-16 14:38:10
......

藤椅
fengyg(真实交易用户) 企业认证  发表于 2016-6-17 07:49:26
kankan

板凳
lm972(真实交易用户) 发表于 2016-6-17 08:12:47
谢谢分享

报纸
kzpan(未真实交易用户) 发表于 2016-6-17 09:45:17

地板
模拟转换(真实交易用户) 发表于 2016-6-17 10:16:31
共同学习下

7
Nicolle(真实交易用户) 学生认证  发表于 2016-6-17 10:34:15
提示: 作者被禁止或删除 内容自动屏蔽

8
albertwishedu(真实交易用户) 发表于 2016-6-17 18:37:15

9
akta(未真实交易用户) 发表于 2016-6-17 22:15:55
KANKAN

10
Nicolle(真实交易用户) 学生认证  发表于 2016-6-18 01:29:40
提示: 作者被禁止或删除 内容自动屏蔽

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2026-1-2 12:57