楼主: yahoocom
4820 2

R Package for MCMC Output Convergence Assessment and Posterior Inference [推广有奖]

  • 7关注
  • 13粉丝

已卖:388份资源

学科带头人

66%

还不是VIP/贵宾

-

威望
1
论坛币
31869 个
通用积分
8.1655
学术水平
29 点
热心指数
55 点
信用等级
15 点
经验
60564 点
帖子
1988
精华
1
在线时间
1903 小时
注册时间
2004-9-29
最后登录
2025-12-23

楼主
yahoocom 发表于 2009-6-7 12:24:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

334280.pdf (534.71 KB)

Markov chain Monte Carlo (MCMC) is the most widely used method of estimating joint posterior distributions in Bayesian analysis. The idea of MCMC is to iteratively produce parameter values that are representative samples from the joint posterior. Unlike frequentist analysis where iterative model fitting routines are monitored for convergence to a single point, MCMC output is monitored for convergence to a distribution. Thus, specialized diagnostic tools are needed in the Bayesian setting. To this end, the R package boa was created. This manuscript presents the user's manual for boa, which outlines the use of and methodology upon which the software is based. Included is a description of the menu system, data management capabilities, and statistical/graphical methods for convergence assessment and posterior inference. Throughout the manual, a linear regression example is used to illustrate the software.

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Convergence Assessment Inference Assessmen converge output Inference Convergence package Assessment

沙发
82cfa 发表于 2009-6-23 15:43:25
Thanks for the information

藤椅
tamtam701013 发表于 2011-10-2 03:13:14
Thanks for your sharing.

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-24 19:02