楼主: cmwei333
3684 2

【Springer 数学教材】Algorithmic Advances in Riemannian Geometry and App (2016) [推广有奖]

贵宾

已卖:205124份资源

泰斗

1%

还不是VIP/贵宾

-

TA的文库  其他...

【历史+心理学+社会自然科学】

【数学+统计+计算机编程】

【金融+经济+商学+国际政治】

威望
6
论坛币
3606565 个
通用积分
1126.1851
学术水平
4327 点
热心指数
4650 点
信用等级
3957 点
经验
363248 点
帖子
9795
精华
9
在线时间
2842 小时
注册时间
2015-2-9
最后登录
2017-1-29

初级热心勋章 中级热心勋章 高级热心勋章 初级信用勋章 中级信用勋章 初级学术勋章 特级热心勋章 中级学术勋章 高级信用勋章 高级学术勋章 特级学术勋章 特级信用勋章

楼主
cmwei333 发表于 2016-10-9 19:40:30 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Algorithmic Advances in Riemannian Geometry and Applications
For Machine Learning, Computer Vision, Statistics, and Optimization

Editors: Hà Quang Minh, Vittorio Murino

cover.jpg

Showcases Riemannian geometry as a foundational mathematical framework for solving many problems in machine learning, statistics, optimization, computer vision, and related fields

Describes comprehensively the state-of-the-art theory and algorithms in the Riemannian framework along with their concrete practical applications

Written by leading experts in statistics, machine learning, optimization, pattern recognition, and computer vision

This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using the mathematical machinery of Riemannian geometry. As demonstrated by all the chapters in the book, when the data is intrinsically non-Euclidean, the utilization of this geometrical information can lead to better algorithms that can capture more accurately the structures inherent in the data, leading ultimately to better empirical performance. This book is not intended to be an encyclopedic compilation of the applications of Riemannian geometry. Instead, it focuses on several important research directions that are currently actively pursued by researchers in the field. These include statistical modeling and analysis on manifolds,optimization on manifolds, Riemannian manifolds and kernel methods, and dictionary learning and sparse coding on manifolds. Examples of applications include novel algorithms for Monte Carlo sampling and Gaussian Mixture Model fitting,  3D brain image analysis,image classification, action recognition, and motion tracking.

Table of contents

Bayesian Statistical Shape Analysis on the Manifold of Diffeomorphisms

Sampling Constrained Probability Distributions Using Spherical Augmentation

Geometric Optimization in Machine Learning

Positive Definite Matrices:

From Covariance Matrices to Covariance Operators: Data Representation from Finite to Infinite-Dimensional Settings

Dictionary Learning on Grassmann Manifolds

Regression on Lie Groups and Its Application to Affine Motion Tracking

An Elastic Riemannian Framework for Shape

本帖隐藏的内容

Algorithmic Advances in Riemannian Geometry and Applications_For Machine Learnin.pdf (5.6 MB, 需要: 20 个论坛币)



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Algorithmic Algorithm Advances Geometry Springer

本帖被以下文库推荐

bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3257
bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3258
bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3259

沙发
caifacai(未真实交易用户) 发表于 2016-10-10 05:49:42
感谢分享好资源!

藤椅
纯洁理想奋斗(未真实交易用户) 在职认证  发表于 2016-10-10 13:23:25
提示: 作者被禁止或删除 内容自动屏蔽

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2026-1-1 08:57