楼主: xumw128
2084 1

An Introduction to Continuous-Time Stochastic Processes Theory, Models, and ... [推广有奖]

  • 0关注
  • 2粉丝

已卖:23041份资源

院士

14%

还不是VIP/贵宾

-

威望
1
论坛币
245980 个
通用积分
7.9556
学术水平
7 点
热心指数
10 点
信用等级
5 点
经验
34426 点
帖子
1274
精华
0
在线时间
881 小时
注册时间
2006-5-12
最后登录
2025-8-18

楼主
xumw128 发表于 2009-7-6 14:38:07 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
An Introduction to Continuous-Time Stochastic Processes Theory, Models, and Applications to Finance.pdf
by Vincenzo Capasso, David Bakstein

Birkhäuser Boston
2004-12-07
ISBN: 0817632344
343 pages

Contents
Preface........................................................v
Part I The Theory of Stochastic Processes
1 Fundamentals of Probability...............................3
1.1 Probability and Conditional Probability....................3
1.2 Random Variables and Distributions.......................8
1.3 Expectations............................................15
1.4 Independence...........................................19
1.5 Conditional Expectations.................................26
1.6 Conditional and Joint Distributions........................35
1.7 Convergence of Random Variables.........................41
1.8 Exercises and Additions..................................44
2 Stochastic Processes.......................................51
2.1 Definition..............................................51
2.2 Stopping Times.........................................58
2.3 Canonical Form of a Process..............................59
2.4 Gaussian Processes......................................60
2.5 Processes with Independent Increments....................61
2.6 Martingales.............................................63
2.7 Markov Processes.......................................72
2.8 Brownian Motion and the Wiener Process..................90
2.9 Counting,Poisson,and L′evy Processes.....................102
2.10 Marked Point Processes..................................111
2.11 Exercises and Additions..................................118
3 The It?o Integral...........................................127
3.1 Definition and Properties.................................127
3.2 Stochastic Integrals as Martingales........................139x Contents
3.3 Ito? Integrals of Multidimensional Wiener Processes..........143
3.4 The Stochastic Di?erential................................146
3.5 Ito?’s Formula...........................................149
3.6 Martingale Representation Theorem.......................150
3.7 Multidimensional Stochastic Di?erentials...................152
3.8 Exercises and Additions..................................155
4 Stochastic Di?erential Equations..........................161
4.1 Existence and Uniqueness of Solutions.....................161
4.2 The Markov Property of Solutions.........................176
4.3 Girsanov Theorem.......................................182
4.4 Kolmogorov Equations...................................185
4.5 Multidimensional Stochastic Di?erential Equations..........194
4.6 Stability of Stochastic Di?erential Equations................196
4.7 Exercises and Additions..................................203
Part II The Applications of Stochastic Processes
5 Applications to Finance and Insurance.....................211
5.1 Arbitrage-Free Markets..................................212
5.2 The Standard Black–Scholes Model........................216
5.3 Models of Interest Rates..................................222
5.4 Contingent Claims under Alternative Stochastic Processes....227
5.5 Insurance Risk..........................................230
5.6 Exercises and Additions..................................236
6 Applications to Biology and Medicine.....................239
6.1 Population Dynamics:Discrete-in-Space–Continuous-in-Time
Models.................................................239
6.2 Population Dynamics:Continuous Approximation of Jump
Models.................................................250
6.3 Population Dynamics:Individual-Based Models.............253
6.4 Neurosciences...........................................270
6.5 Exercises and Additions..................................275
Part III Appendices
A Measure and Integration...................................283
A.1 Rings andσ-Algebras....................................283
A.2 Measurable Functions and Measure........................284
A.3 Lebesgue Integration.....................................288
A.4 Lebesgue–Stieltjes Measure and Distributions...............292
A.5 Stochastic Stieltjes Integration............................296Contents xi
B Convergence of Probability Measures on Metric Spaces....297
B.1 Metric Spaces...........................................297
B.2 Prohorov’s Theorem.....................................304
B.3 Donsker’s Theorem......................................304
C Maximum Principles of Elliptic and Parabolic Operators..313
C.1 Maximum Principles of Elliptic Equations..................313
C.2 Maximum Principles of Parabolic Equations................315
D Stability of Ordinary Di?erential Equations................321
References.....................................................325
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:introduction troduction Continuous Stochastic Processes Theory models Processes introduction Stochastic

本帖被以下文库推荐

沙发
shqchen1966(未真实交易用户) 发表于 2010-12-1 17:29:14
louzu, taiguile!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-25 08:42