楼主: cmwei333
1457 7

【Springer 数学】 Quadratic Residues and Non-Residues (2016) by Steve Wright [推广有奖]

贵宾

已卖:205137份资源

泰斗

1%

还不是VIP/贵宾

-

TA的文库  其他...

【历史+心理学+社会自然科学】

【数学+统计+计算机编程】

【金融+经济+商学+国际政治】

威望
6
论坛币
3606787 个
通用积分
1127.2032
学术水平
4327 点
热心指数
4650 点
信用等级
3957 点
经验
363248 点
帖子
9795
精华
9
在线时间
2842 小时
注册时间
2015-2-9
最后登录
2017-1-29

初级热心勋章 中级热心勋章 高级热心勋章 初级信用勋章 中级信用勋章 初级学术勋章 特级热心勋章 中级学术勋章 高级信用勋章 高级学术勋章 特级学术勋章 特级信用勋章

楼主
cmwei333 发表于 2016-11-23 12:26:04 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Quadratic Residues and Non-Residues
Selected Topics

Authors: Steve Wright

cover.jpg

Illustrates how the study of quadratic residues led directly to the development of fundamental methods in elementary, algebraic, and analytic number theory

Presents in detail seven proofs of the Law of Quadratic Reciprocity, with an emphasis on the six proofs which Gauss published

Discusses in some depth the historical development of the study of quadratic residues and non-residues

This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory.

The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.

Table of contents

Front Matter
Pages i-xiii

Introduction: Solving the General Quadratic Congruence Modulo a Prime
Pages 1-8

Basic Facts
Pages 9-19

Gauss’ Theorema Aureum: The Law of Quadratic Reciprocity
Pages 21-77

Four Interesting Applications of Quadratic Reciprocity
Pages 79-118

The Zeta Function of an Algebraic Number Field and Some Applications
Pages 119-150

Elementary Proofs
Pages 151-160

Dirichlet L-Functions and the Distribution of Quadratic Residues
Pages 161-201

Dirichlet’s Class-Number Formula
Pages 203-226

Quadratic Residues and Non-Residues in Arithmetic Progression
Pages 227-271

Are Quadratic Residues Randomly Distributed?
Pages 273-283

Back Matter
Pages 285-294

原版 PDF + EPUB:

本帖隐藏的内容

原版 PDF:
Quadratic Residues and Non-Residues_Selected Topics.pdf (3.44 MB, 需要: 20 个论坛币)

EPUB:
Quadratic Residues and Non-Residues_Selected Topics.epub (2.97 MB, 需要: 20 个论坛币)

PDF + EPUB 压缩包:
Quadratic Residues and Non-Residues_Selected Topics.zip (4.72 MB, 需要: 40 个论坛币) 本附件包括:
  • Quadratic Residues and Non-Residues_Selected Topics.pdf
  • Quadratic Residues and Non-Residues_Selected Topics.epub



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Quadratic Springer Wright Spring resid directly emphasis account methods number

已有 1 人评分经验 收起 理由
zl89 + 60 精彩帖子

总评分: 经验 + 60   查看全部评分

本帖被以下文库推荐

bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3257
bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3258
bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3259

沙发
research(未真实交易用户) 发表于 2016-11-23 13:28:09
提示: 作者被禁止或删除 内容自动屏蔽

藤椅
research(未真实交易用户) 发表于 2016-11-23 13:33:13
提示: 作者被禁止或删除 内容自动屏蔽

板凳
zhouxinwj(真实交易用户) 发表于 2016-11-23 19:31:28
谢谢分享

报纸
crossbone254(真实交易用户) 发表于 2016-11-23 21:55:43
Quadratic Residues and Non-Residues (2016)

地板
bbslover(真实交易用户) 在职认证  发表于 2016-11-24 00:36:30
thanks for sharing

7
leon_9930754(未真实交易用户) 发表于 2016-11-24 08:57:38
谢谢分享

8
franky_sas(未真实交易用户) 发表于 2016-11-24 16:07:18

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2026-1-9 06:41