楼主: yhongl12
1831 2

USING NEURAL NETWORKS AND GENETIC ALGORITHMS TO PREDICT STOCK MARKET RETURNS [推广有奖]

  • 0关注
  • 7粉丝

已卖:6474份资源

教授

72%

还不是VIP/贵宾

-

威望
0
论坛币
62861 个
通用积分
13.0856
学术水平
37 点
热心指数
37 点
信用等级
23 点
经验
42138 点
帖子
729
精华
0
在线时间
2105 小时
注册时间
2007-6-2
最后登录
2023-4-30

楼主
yhongl12 发表于 2009-7-15 15:43:16 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
USING NEURAL NETWORKS AND GENETIC ALGORITHMS TO PREDICT STOCK MARKET RETURNS
A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER FOR THE DEGREE OF MASTER OF SCIENCE IN ADVANCED COMPUTER SCIENCE IN THE  FACULTY OF SCIENCE AND ENGINEERING
By Efstathios Kalyvas
Department Of Computer Science
Contents
Abstract 6
Declaration 7
Copyright and Ownership 8
Acknowledgments 9
1 Introduction 11
1.1 Aims and Objectives........................................................................................ 11
1.2 Rationale......................................................................................................... 12
1.3 Stock Market Prediction.................................................................................. 12
1.4 Organization of the Study................................................................................ 13
2 Stock Markets and Prediction 15
2.1 The Stock Market ............................................................................................ 15
2.1.1 Investment Theories..................................................................................... 15
2.1.2 Data Related to the Market.......................................................................... 16
2.2 Prediction of the Market.................................................................................. 17
2.2.1 Defining the prediction task......................................................................... 17
2.2.2 Is the Market predictable?........................................................................... 18
2.2.3 Prediction Methods ..................................................................................... 19
2.2.3.1 Technical Analysis............................................................................... 20
2.2.3.2 Fundamental Analysis ......................................................................... 20
2.2.3.3 Traditional Time Series Prediction ...................................................... 21
2.2.3.4 Machine Learning Methods ................................................................. 23
2.2.3.4.1 Nearest Neighbor Techniques ...................................................... 24
2.2.3.4.2 Neural Networks .......................................................................... 24
2.3 Defining The Framework Of Our Prediction Task ........................................... 35
2.3.1 Prediction of the Market on daily Basis....................................................... 35
2.3.2 Defining the Exact Prediction Task ............................................................. 37
2.3.3 Model Selection........................................................................................... 38
2.3.4 Data Selection............................................................................................. 39
3 Data 41
3.1 Data Understanding........................................................................................ 41
3.1.1 Initial Data Collection................................................................................. 41
3.1.2 Data Description......................................................................................... 42
3.1.3 Data Quality ............................................................................................... 43
3.2 Data Preparation ............................................................................................ 44
3.2.1 Data Construction....................................................................................... 44
3.2.2 Data Formation........................................................................................... 46
3.3 Testing For Randomness ................................................................................. 47
3.3.1 Randomness ................................................................................................ 47
3.3.2 Run Test ...................................................................................................... 48
3.3.3 BDS Test ..................................................................................................... 51
4 Models 55
4.1 Traditional Time Series Forecasting ............................................................... 55
4.1.1 Univariate and Multivariate linear regression............................................. 55
4.1.2 Use of Information Criteria to define the optimum lag structure.................. 57
4.1.3 Evaluation of the AR model ......................................................................... 58
4.1.4 Checking the residuals for non-linear patters .............................................. 60
4.1.5 Software...................................................................................................... 61
4.2 Artificial Neural Networks .............................................................................. 61
4.2.1 Description ................................................................................................. 61
4.2.1.1 Neurons............................................................................................... 62
4.2.1.2 Layers ................................................................................................. 62
4.2.1.3 Weights Adjustment ............................................................................. 63
4.2.2 Parameters Setting ...................................................................................... 72
4.2.2.1 Neurons............................................................................................... 72
4.2.2.2 Layers ................................................................................................. 72
4.2.2.3 Weights Adjustment ............................................................................. 73
4.2.3 Genetic Algorithms...................................................................................... 74
4.2.3.1 Description.......................................................................................... 74
4.2.3.2 A Conventional Genetic Algorithm ...................................................... 74
4.2.3.3 A GA that Defines the NN’s Structure .................................................. 77
4.2.4 Evaluation of the NN model......................................................................... 81
4.2.5 Software...................................................................................................... 81
5 Experiments and Results 82
5.1 Experiment I: Prediction Using Autoregressive Models................................... 82
5.1.1 Description ................................................................................................. 82
5.1.2 Application of Akaike and Bayesian Information Criteria............................ 83
5.1.3 AR Model Adjustment.................................................................................. 84
5.1.4 Evaluation of the AR models........................................................................ 84
5.1.5 Investigating for Non-linear Residuals ........................................................ 86
5.2 Experiment II: Prediction Using Neural Networks .......................................... 88
5.2.1 Description ................................................................................................. 88
5.2.2 Search Using the Genetic Algorithm............................................................ 90
5.2.2.1 FTSE ................................................................................................... 92
5.2.2.2 S&P................................................................................................... 104
5.2.3 Selection of the fittest Networks ................................................................. 109
5.2.4 Evaluation of the fittest Networks .............................................................. 112
5.2.5 Discussion of the outcomes of Experiment II ............................................. 114
5.3 Conclusions .................................................................................................. 115
6 Conclusion 118
6.1 Summary of Results....................................................................................... 118
6.2 Conclusions .................................................................................................. 119
6.3 Future Work.................................................................................................. 120
6.3.1 Input Data................................................................................................. 120
6.3.2 Pattern Detection ...................................................................................... 121
6.3.3 Noise Reduction ........................................................................................ 121
Appendix I 122
Appendix II 140
References 163
Abstract
In this study we attempt to predict the daily excess returns of FTSE 500 and S&P 500
indices over the respective Treasury Bill rate returns. Initially, we prove that the excess
returns time series do not fluctuate randomly. Furthermore we apply two different types
of prediction models: Autoregressive (AR) and feed forward Neural Networks (NN) to
predict the excess returns time series using lagged values. For the NN models a Genetic
Algorithm is constructed in order to choose the optimum topology. Finally we evaluate
the prediction models on four different metrics and conclude that they do not manage to
outperform significantly the prediction abilities of naï ve predictors.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Algorithms Algorithm Networks predict Genetic Using AND Stock market Algorithms

沙发
xichongwanglei(未真实交易用户) 在职认证  发表于 2015-5-29 18:29:30
去google下载不就行了吗,还要收费

藤椅
jjxm20060807(真实交易用户) 发表于 2016-9-11 19:48:06
谢谢分享

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-30 06:27