楼主: cmwei333
3681 4

【Python】Genetic Algorithms with Python (2016) [推广有奖]

贵宾

已卖:205052份资源

泰斗

1%

还不是VIP/贵宾

-

TA的文库  其他...

【历史+心理学+社会自然科学】

【数学+统计+计算机编程】

【金融+经济+商学+国际政治】

威望
6
论坛币
3605773 个
通用积分
1121.2875
学术水平
4327 点
热心指数
4650 点
信用等级
3957 点
经验
363248 点
帖子
9795
精华
9
在线时间
2842 小时
注册时间
2015-2-9
最后登录
2017-1-29

初级热心勋章 中级热心勋章 高级热心勋章 初级信用勋章 中级信用勋章 初级学术勋章 特级热心勋章 中级学术勋章 高级信用勋章 高级学术勋章 特级学术勋章 特级信用勋章

楼主
cmwei333 发表于 2016-10-7 02:17:08 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Genetic Algorithms with Python

Clinton Sheppard

cover.jpg

Genetic algorithms are one of the tools you can use to apply machine learning to finding good, sometimes even optimal, solutions to problems that have billions of potential solutions. This book gives you experience making genetic algorithms work for you, using easy-to-follow example problems that you can fall back upon when learning to use other machine learning tools and techniques. Each chapter is a step-by-step tutorial that helps to build your skills at using genetic algorithms to solve problems using Python. Download the sample chapters for a brief introduction to genetic algorithms and the writing style used in this book.

Python is a high-level, low ceremony and powerful language whose code can be easily understood even by entry-level programmers. If you have experience with another programming language then you should have no difficulty learning Python by induction.

The code in this book is open source, licensed under the Apache License, Version 2.0. The final code from each chapter is available for download using a link at the end of the chapter.

Table of Contents
A brief introduction to genetic algorithms

Chapter 1: Hello World!
Guess a password given the number of correct letters in the guess. Build a mutation engine.  

Chapter 2: One Max Problem
Produce an array of bits where all are 1s.  Expands the engine to work with any type of gene.

Chapter 3: Sorted Numbers
Produce a sorted integer array. Demonstrates handling multiple fitness goals and constraints between genes.

Chapter 4: The 8 Queens Puzzle
Find safe Queen positions on an 8x8 board and then expand to NxN. Demonstrates the difference between phenotype and genotype.

Chapter 5: Graph Coloring
Color a map of the United States using only 4 colors. Introduces standard data sets and working with files.  Also introduces using rules to work with gene constraints.

Chapter 6: Card Problem
More gene constraints. Introduces custom mutation, memetic algorithms, and the sum-of-difference technique.  Also demonstrates a chromosome where the way a gene is used depends on its position in the gene array.

Chapter 7: Knights Problem
Find the minimum number of knights required to attack all positions on a board. Introduces custom genes and gene-array creation. Also demonstrates local minimums and maximums.

Chapter 8: Magic Squares
Find squares where all the rows, columns and both diagonals of an NxN matrix have the same sum. Introduces simulated annealing.

Chapter 9: Knapsack Problem
Optimize the content of a container for one or more variables. Introduces branch and bound and variable length chromosomes.

Chapter 10: Solving Linear Equations
Find the solutions to linear equations with 2, 3 and 4 unknowns.  Branch and bound variation.  Reinforces genotype flexibility.

Chapter 11: Generating Sudoku
A guided exercise in generating Sudoku puzzles.

Chapter 12: Traveling Salesman Problem (TSP)
Find the optimal route to visit cities. Introduces crossover and a pool of parents.

Chapter 13: Approximating Pi
Find the two 10-bit numbers whose dividend is closest to Pi. Introduces using one genetic algorithm to tune another.

Chapter 14: Equation Generation
Find the shortest equation that produces a specific result using addition, subtration, multiplication, &c. Introduces symbolic genetic programming.

Chapter 15: The Lawnmower Problem
Generate a series of instructions that cause a lawnmower to cut a field of grass. Genetic programming with control structures, objects and automatically defined functions (ADFs).

Chapter 16: Logic Circuits
Build circuits that behave like basic logic gates, gate combinations and finally a 2-bit adder using tree nodes and hill climbing.

Chapter 17: Regular Expressions
Find regular expressions that match wanted strings. Introduces chromosome repair and growth control.

Chapter 18: Tic-tac-toe
Create rules for playing the game without losing. Introduces tournament selection.

本帖隐藏的内容

Genetic Algorithms with Python.pdf (9.34 MB, 需要: 20 个论坛币)



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Algorithms Algorithm Genetic python With experience techniques potential sometimes learning

已有 1 人评分经验 论坛币 学术水平 热心指数 信用等级 收起 理由
accumulation + 100 + 100 + 1 + 1 + 1 精彩帖子

总评分: 经验 + 100  论坛币 + 100  学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

本帖被以下文库推荐

bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3257
bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3258
bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3259

沙发
jjxm20060807(真实交易用户) 发表于 2016-10-7 07:54:39
谢谢分享

藤椅
纯洁理想奋斗(未真实交易用户) 在职认证  发表于 2016-10-7 11:11:30
提示: 作者被禁止或删除 内容自动屏蔽

板凳
baiwei1637124(真实交易用户) 学生认证  发表于 2018-6-12 20:02:33
楼主威武,多谢分享~

报纸
皇甫子奕(未真实交易用户) 发表于 2020-2-1 21:22:47 来自手机
好贵啊,没钱下

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-26 00:19