楼主: cmwei333
9863 43

【金融信号处理与机器学习】 Financial Signal Processing and Machine Learning (16) [推广有奖]

贵宾

已卖:205048份资源

泰斗

1%

还不是VIP/贵宾

-

TA的文库  其他...

【历史+心理学+社会自然科学】

【数学+统计+计算机编程】

【金融+经济+商学+国际政治】

威望
6
论坛币
3605718 个
通用积分
1121.0025
学术水平
4327 点
热心指数
4650 点
信用等级
3957 点
经验
363248 点
帖子
9795
精华
9
在线时间
2842 小时
注册时间
2015-2-9
最后登录
2017-1-29

初级热心勋章 中级热心勋章 高级热心勋章 初级信用勋章 中级信用勋章 初级学术勋章 特级热心勋章 中级学术勋章 高级信用勋章 高级学术勋章 特级学术勋章 特级信用勋章

楼主
cmwei333 发表于 2016-12-8 10:19:34 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Financial Signal Processing and Machine Learning

Ali N. Akansu (Editor), Sanjeev R. Kulkarni (Editor), Dmitry M. Malioutov (Editor)

cover.jpg

The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches.

Key features:

Highlights signal processing and machine learning as key approaches to quantitative finance.
Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems.
Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques.
Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.

目录截图:

pic1.jpg

pic2.jpg

pic3.jpg

pic4.jpg

本帖隐藏的内容

原版 PDF:
Financial Signal Processing and Machine Learning.pdf (4.18 MB, 需要: 20 个论坛币)

PDF 压缩包:
Financial Signal Processing and Machine Learning.zip (3.38 MB, 需要: 20 个论坛币) 本附件包括:
  • Financial Signal Processing and Machine Learning.pdf


  如果你喜欢我分享的书籍,请关注我:
https://bbs.pinggu.org/z_guanzhu.php?action=add&fuid=5975757

订阅我的文库:

【金融 + 经济 + 商学 + 国际政治】
https://bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3257

【数学 + 统计 + 计算机编程】
https://bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3258

【历史 + 心理学 + 社会自然科学】
https://bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3259



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Processing financial inancial Learning Financia investment management available industry learning

已有 2 人评分经验 论坛币 学术水平 热心指数 信用等级 收起 理由
accumulation + 100 + 100 + 1 + 1 + 1 精彩帖子
xujingtang + 60 奖励积极上传好的资料

总评分: 经验 + 160  论坛币 + 100  学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

本帖被以下文库推荐

bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3257
bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3258
bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3259

沙发
ermutuxia(真实交易用户) 发表于 2016-12-8 11:40:00
Wonderful

藤椅
jinyizhe282(未真实交易用户) 发表于 2016-12-8 11:55:37
saomiao ban ?

板凳
tnandy(真实交易用户) 发表于 2016-12-8 13:11:26
thanks

报纸
w-long(真实交易用户) 发表于 2016-12-8 13:40:49 来自手机
Financial Signal Processing and Machine Learning

地板
waterup(未真实交易用户) 发表于 2016-12-8 14:24:33
Financial Signal Processing and Machine Learning

7
weiming197813(真实交易用户) 在职认证  发表于 2016-12-8 16:20:41
谢谢分享楼主威武楼主万岁

8
paopao638(真实交易用户) 发表于 2016-12-8 16:35:21
谢谢楼主分享~

9
franky_sas(未真实交易用户) 发表于 2016-12-8 17:39:37

10
KungFuRat(真实交易用户) 发表于 2016-12-8 18:05:03
感谢分享!!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-22 12:24