楼主: martinnyj
2207 8

免費 PORTFOLIO OPTIMIZATION WITH HEDGE FUNDS: [推广有奖]

  • 0关注
  • 58粉丝

已卖:36255份资源

学科带头人

44%

还不是VIP/贵宾

-

威望
0
论坛币
213097 个
通用积分
117.8865
学术水平
183 点
热心指数
227 点
信用等级
154 点
经验
51222 点
帖子
868
精华
0
在线时间
1598 小时
注册时间
2007-6-14
最后登录
2025-10-27

楼主
martinnyj 发表于 2009-8-2 22:29:12 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
PORTFOLIO OPTIMIZATION WITH HEDGE FUNDS:
Conditional Value At Risk And Conditional Draw-Down At Risk
For Portfolio Optimization With Alternative Investments
Stephan J¨ohri 
Supervisor: PD Dr. Diethelm W¨urtz
Professor: Dr. Kai Nagel
March 16, 2004

Abstract

The aim of this Master’s Thesis is to describe and assess different ways to optimize a portfolio.  Special attention is paid to the influence of hedge funds since their returns exhibit special statistical properties.

In the first part of this thesis modern portfolio theory is considered. The Markowitz approach is described and analyzed. It assumes that the assets are identically independently distributed according to the Normal law. CAPM and APT are briefly reviewed.

In the second part we go beyond Markowitz and show that asset returns are in reality not normally distributed, but have fat tails and asymmetries. This is especially true for the returns of hedge funds. These facts justify further investigations for alternative portfolio optimization techniques. We describe and discuss therefore alternative methods that can be found in literature.

They use risk measures different than the standard deviation like Value at Risk or Draw-Down and their derivations Conditional Value at Risk and Conditional Draw-Down at Risk. Based on these methods, the respective optimization problems are formulated and implemented.  In the third part we describe the numerical implementation and the used data.

Finally the weight allocations and efficient frontiers that summarize the results of these optimization problems are calculated, analyzed and compared. We focus on the question how optimal portfolios with and without hedge funds are constructed according to the different optimization methods, how useful these methods are in practice and how the results differ. The results are derived by analytical work and simulations on historical and artificial data.

Contents
I Modern Portfolio Theory 7
1 Markowitz Model 7
1.1 Risk Return Framework And Utility Function . . . . . . . . . . . . . . . . . . . . 7
1.2 Selecting Optimal Portfolios: The Efficient Frontier . . . . . . . . . . . . . . . . . 14
2 Capital Asset Pricing Model (CAPM) 27
2.1 Standard Capital Asset Pricing Model . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Arbitrage Pricing Theory (APT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
II Beyond Markowitz 34
3 Stylized Facts Of Asset Returns 34
3.1 Distribution Form Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Dependencies Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Results Of Statistical Tests Applied To Market Data . . . . . . . . . . . . . . . . 42
4 Portfolio Construction With Non Normal Asset Returns 48
4.1 Introduction To Risk In General . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Variance As Risk Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5 Value At Risk Measures 52
5.1 Value At Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Conditional Value At Risk, Expected Shortfall And Tail Conditional Expectation 54
5.3 Mean-Conditional Value At Risk Efficient Portfolios . . . . . . . . . . . . . . . . 58
6 Draw-Down Measures 60
6.1 Draw-Down And Time Under-The-Water . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Conditional Draw-Down At Risk And Conditional Time Under-The-Water At Risk 61
6.3 Mean-Conditional Draw-Down At Risk Efficient Portfolios . . . . . . . . . . . . . 65
7 Comparison Of The Risk Measures 67
III Optimization With Alternative Investments 68
8 Numerical Implementation 68
9 Used Data 69
9.1 Normal Vs. Logarithmic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.2 Empirical Vs. Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
10 Evaluation Of The Portfolios 72
10.1 Evaluation With Historical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
10.2 Evaluation With Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Summary and Outlook 82
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Optimization hedge fund Portfolio Portfoli funds Optimization Portfolio funds hedge With

沙发
诸子百家 发表于 2009-8-2 22:32:47
多谢分享~~~~~~

藤椅
fin9845cl 发表于 2009-8-3 08:15:02
thank you very much

板凳
tcca6675 发表于 2009-8-3 08:50:11
下载学习
谢谢楼主的分享

报纸
leon_town 发表于 2009-8-3 12:32:44
谢谢分享!!{:3_52:}

地板
dumb 发表于 2009-8-3 12:52:06
Thank you very much.
身是菩提树,心如明镜台,时时勤拂拭,勿使惹尘埃。
菩提本无树,明镜亦非台,本来无一物,何处惹尘埃?

7
xlican 发表于 2009-9-14 00:31:18
谢谢楼主大方,每次看到自己急需的资料时如获至宝,但当要500钱时只能望而却步,再次感谢你的分享。

8
elaine--myself 发表于 2009-10-28 19:21:24
1# martinnyj

谢谢搂主
突然发现我申博无望,工作又没找, 我该怎么办

9
风只 在职认证  发表于 2009-10-29 15:29:44
My god, 太好了,这本书找的我好辛苦啊

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2026-1-2 20:09