楼主: 扣税464
487 0

[英文文献] Panel Data with Cross-Sectional Dependence Characterized by a Multi-Level F... [推广有奖]

  • 0关注
  • 0粉丝

等待验证会员

学前班

0%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
10 点
帖子
0
精华
0
在线时间
0 小时
注册时间
2020-9-19
最后登录
2020-9-19

楼主
扣税464 发表于 2004-12-5 21:20:12 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
英文文献:Panel Data with Cross-Sectional Dependence Characterized by a Multi-Level Factor Structure-面板数据具有横截面依赖特征的多层次因素结构
英文文献作者:Carlos Vladimir Rodríguez-Caballero
英文文献摘要:
A panel data model with a multi-level cross-sectional dependence is proposed. The factor structure is driven by top-level common factors as well as non-pervasive factors. I propose a simple method to filter out the full factor structure that overcomes limitations in standard procedures which may mix up both levels of unobservable factors and may hamper the identification of the model. The model covers both stationary and non-stationary cases and takes into account other relevant features that make the model well suited to the analysis of many types of time series frequently addressed in macroeconomics and finance. The model makes it possible to examine the time series and cross-sectional dynamics of variables allowing for a rich fractional cointegration analysis. A Monte Carlo simulation is conducted to examine the finite sample features of the suggested procedure. Findings indicate that the methodology proposed works well in a wide variety of data generation processes and has much lower biases than the alternative estimation methods either in the I(0) or I(d) cases.

提出了一种具有多层次横截面依赖关系的面板数据模型。因素结构由顶层共同因素和非普遍因素驱动。我提出了一种简单的方法来过滤掉所有的因素结构,它克服了标准程序的局限性,这些局限性可能混合了两种不可观察的因素,并可能妨碍模型的识别。该模型涵盖了平稳和非平稳情况,并考虑了其他相关特征,这些特征使该模型非常适合分析在宏观经济和金融中经常提到的许多类型的时间序列。该模型使它有可能检查时间序列和横向动态变量允许一个丰富的分数协整分析。蒙特卡罗模拟进行了检查有限样本特征的建议程序。结果表明,所提出的方法在各种各样的数据生成过程中工作良好,并且在I(0)或I(d)情况下比其他估计方法有更低的偏差。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-29 02:35