楼主: jasonwu24
19320 24

[书籍介绍] 【2017新书】Hands-On Machine Learning with Scikit-Learn and TensorFlow [推广有奖]

  • 5关注
  • 43粉丝

已卖:14715份资源

讲师

98%

还不是VIP/贵宾

-

威望
0
论坛币
58949 个
通用积分
252.4860
学术水平
119 点
热心指数
114 点
信用等级
85 点
经验
22677 点
帖子
344
精华
1
在线时间
505 小时
注册时间
2015-2-15
最后登录
2022-11-18

楼主
jasonwu24 在职认证  发表于 2017-3-16 09:47:56 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
  • Title: Hands-On Machine Learning with Scikit-Learn and TensorFlow
  • Author: Aurélien Géron
  • Length: 581 pages
  • Edition: 1
  • Language: English
  • Publisher: O'Reilly Media
  • Publication Date: 2017-04-07
  • ISBN-10: 1491962291
  • ISBN-13: 9781491962299



【压缩包中只有AZW3格式,PDF格式是我用工具转换的,待true PDF等格式出来后再补充,谨慎下载!!!】

Hands-On.Machine.Learning.with.Scikit-Learn.and.TensorFlow.2017.pdf (39.66 MB, 需要: 5 个论坛币)

OReilly.Hands-On.Machine.Learning.with.Scikit-Learn.and.TensorFlow.1491962291.zip (17.25 MB, 需要: 5 个论坛币) 本附件包括:
  • OReilly.Hands-On.Machine.Learning.with.Scikit-Learn.and.TensorFlow.1491962291.azw3


Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques for Building Intelligent Systems

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.
By using concrete examples, minimal theory, and two production-ready Python frameworks—scikit-learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started.
  • Explore the machine learning landscape, particularly neural nets
  • Use scikit-learn to track an example machine-learning project end-to-end
  • Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods
  • Use the TensorFlow library to build and train neural nets
  • Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning
  • Learn techniques for training and scaling deep neural nets
  • Apply practical code examples without acquiring excessive machine learning theory or algorithm details
Table of Contents
Chapter 1: The Machine Learning Landscape
Chapter 2: End-to-End Machine Learning Project
Chapter 3: Classification
Chapter 4: Training Linear Models
Chapter 5: Support Vector Machines
Chapter 6: Decision Trees
Chapter 7: Ensemble Learning and Random Forests
Chapter 8: Dimensionality Reduction
Chapter 9: Up and Running with TensorFlow
Chapter 10: Introduction to Artificial Neural Networks
Chapter 11: Training Deep Neural Nets
Chapter 12: Distributing TensorFlow Across Devices and Servers
Chapter 13: Convolutional Neural Networks
Chapter 14: Recurrent Neural Networks
Chapter 15: Autoencoders
Chapter 16: Reinforcement Learning

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


已有 1 人评分经验 收起 理由
kongqingbao280 + 60 精彩帖子

总评分: 经验 + 60   查看全部评分

本帖被以下文库推荐

沙发
kdfrmykdfrmy(真实交易用户) 发表于 2017-3-17 10:35:57
厉害了 我一直看的网页版

藤椅
maxiaoan(未真实交易用户) 在职认证  发表于 2017-3-17 18:55:41 来自手机
谢谢分享

板凳
luppzy(未真实交易用户) 发表于 2017-4-2 11:49:49
感谢分享~~

报纸
chengtao114(未真实交易用户) 发表于 2017-5-2 17:17:04
找了很久了,多谢!

地板
peacelife2013(真实交易用户) 发表于 2017-5-8 07:05:35
Interesting book, thanks

7
XnCSD(真实交易用户) 发表于 2017-5-10 13:16:37
好书,谢谢分享

8
beibei2004213(未真实交易用户) 发表于 2017-5-12 14:33:12
支持................................

9
gwx123411(真实交易用户) 发表于 2017-5-12 15:16:04
支持................................

10
去你大爷的mmp(真实交易用户) 发表于 2017-5-24 17:11:42
必须支持一个

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2026-2-10 23:35