Keras: Deep Learning library for Theano and TensorFlowYou have just found Keras.
Keras is a high-level neural networks API, written in Python and capable of running on top of either TensorFlow orTheano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.
Use Keras if you need a deep learning library that:
Allows for easy and fast prototyping (through user friendliness, modularity, and extensibility).
Supports both convolutional networks and recurrent networks, as well as combinations of the two.
The model needs to know what input shape it should expect. For this reason, the first layer in a Sequential model (and only the first, because following layers can do automatic shape inference) needs to receive information about its input shape. There are several possible ways to do this:
Pass an input_shape argument to the first layer. This is a shape tuple (a tuple of integers or None entries, where None indicates that any positive integer may be expected). In input_shape, the batch dimension is not included.
Some 2D layers, such as Dense, support the specification of their input shape via the argument input_dim, and some 3D temporal layers support the arguments input_dim and input_length.
If you ever need to specify a fixed batch size for your inputs (this is useful for stateful recurrent networks), you can pass a batch_size argument to a layer. If you pass both batch_size=32 and input_shape=(6, 8) to a layer, it will then expect every batch of inputs to have the batch shape (32, 6, 8).
As such, the following snippets are strictly equivalent: