本人在用HLM进行分析时出现下列结果,请问该怎么处理?
Program: HLM 6 Hierarchical Linear and Nonlinear Modeling
Authors: Stephen Raudenbush, Tony Bryk, & Richard Congdon
Publisher: Scientific Software International, Inc. (c) 2000
techsupport@ssicentral.com
www.ssicentral.com
-------------------------------------------------------------------------------
Module: HLM2R.EXE (6.08.29257.1)
Date: 2 July 2017, Sunday
Time: 1: 2:25
-------------------------------------------------------------------------------
SPECIFICATIONS FOR THIS HLM2 RUN
Problem Title: no title
The data source for this run = new 1
The command file for this run = C:\Users\majesty\Desktop\成本粘性SAV文件\第二层模型命令.hlm
Output file name = C:\Users\majesty\Desktop\成本粘性SAV文件\hlm2.txt
The maximum number of level-1 units = 3362
The maximum number of level-2 units = 750
The maximum number of iterations = 100
Method of estimation: restricted maximum likelihood
Weighting Specification
-----------------------
Weight
Variable
Weighting? Name Normalized?
Level 1 no
Level 2 no
Precision no
The outcome variable is 鈻矻NCOS
The model specified for the fixed effects was:
----------------------------------------------------
Level-1 Level-2
Coefficients Predictors
---------------------- ---------------
INTRCPT1, B0 INTRCPT2, G00
* YEAR slope, B1 INTRCPT2, G10
* 鈻矻NREV slope, B2 INTRCPT2, G20
* DEC脳鈻?slope, B3 INTRCPT2, G30
SIZE, G31
MB, G32
LEV, G33
IOR, G34
TEND, G35
CASH, G36
STOCK, G37
TOP1, G38
ECB, G39
IDP, G310
BMN, G311
BSN, G312
ESR, G313
CC, G314
NCSKEW, G315
'*' - This level-1 predictor has been centered around its group mean.
The model specified for the covariance components was:
---------------------------------------------------------
Sigma squared (constant across level-2 units)
Tau dimensions
INTRCPT1
YEAR slope
鈻矻NREV slope
DEC脳鈻?slope
Summary of the model specified (in equation format)
---------------------------------------------------
Level-1 Model
Y = B0 + B1*(YEAR) + B2*(鈻矻NREV) + B3*(DEC脳鈻? + R
Level-2 Model
B0 = G00 + U0
B1 = G10 + U1
B2 = G20 + U2
B3 = G30 + G31*(SIZE) + G32*(MB) + G33*(LEV) + G34*(IOR)
+ G35*(TEND) + G36*(CASH) + G37*(STOCK) + G38*(TOP1)
+ G39*(ECB) + G310*(IDP) + G311*(BMN) + G312*(BSN)
+ G313*(ESR) + G314*(CC) + G315*(NCSKEW) + U3
There is a problem in the fixed portion of the model. A near singularity is
likely. Possible sources are a collinearity or multicollinearity among the
predictors. We suggest that you examine a correlation matrix among the fixed
effect predictors.


雷达卡




京公网安备 11010802022788号







