楼主: vrooadk
4006 8

[下载] Making Sense of Data I [推广有奖]

  • 1关注
  • 2粉丝

已卖:110份资源

硕士生

7%

还不是VIP/贵宾

-

威望
0
论坛币
115 个
通用积分
4.6994
学术水平
4 点
热心指数
19 点
信用等级
3 点
经验
1237 点
帖子
161
精华
0
在线时间
101 小时
注册时间
2008-12-9
最后登录
2019-4-4

楼主
vrooadk 发表于 2009-10-13 02:15:25 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
坛子里已经有 II 了,我来传个 I
Description
A practical, step-by-step approach to making sense out of data

Making Sense of Data educates readers on the steps and issues that needto be considered in order to successfully complete a data analysis ordata mining project. The author provides clear explanations that guidethe reader to make timely and accurate decisions from data in almostevery field of study. A step-by-step approach aids professionals incarefully analyzing data and implementing results, leading to thedevelopment of smarter business decisions. With a comprehensivecollection of methods from both data analysis and data miningdisciplines, this book successfully describes the issues that need tobe considered, the steps that need to be taken, and appropriatelytreats technical topics to accomplish effective decision making fromdata.

Readers are given a solid foundation in the procedures associated withcomplex data analysis or data mining projects and are provided withconcrete discussions of the most universal tasks and technicalsolutions related to the analysis of data, including:
* Problem definitions
* Data preparation
* Data visualization
* Data mining
* Statistics
* Grouping methods
* Predictive modeling
* Deployment issues and applications

Throughout the book, the author examines why these multiple approachesare needed and how these methods will solve different problems.Processes, along with methods, are carefully and meticulously outlinedfor use in any data analysis or data mining project.

From summarizing and interpreting data, to identifying non-trivialfacts, patterns, and relationships in the data, to making predictionsfrom the data, Making Sense of Data addresses the many issues that needto be considered as well as the steps that need to be taken to masterdata analysis and mining.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Making makin sense Data King Mining Data

Making_sense_of_data_I.pdf
下载链接: https://bbs.pinggu.org/a-427814.html

5.07 MB

需要: 2 个论坛币  [购买]

沙发
vrooadk(未真实交易用户) 发表于 2009-10-13 02:16:27
Preface.

1. Introduction.

1.1 Overview.

1.2 Problem definition.

1.3 Data preparation.

1.4 Implementation of the analysis.

1.5 Deployment of the results.

1.6 Book outline.

1.7 Summary.

1.8 Further reading.

2. Definition.

2.1 Overview.

2.2 Objectives.

2.3 Deliverables.

2.4 Roles and responsibilities.

2.5 Project plan.

2.6 Case study.

2.6.1 Overview.

2.6.2 Problem.

2.6.3 Deliverables.

2.6.4 Roles and responsibilities.

2.6.5 Current situation.

2.6.6 Timetable and budget.

2.6.7 Cost/benefit analysis.

2.7 Summary.

2.8 Further reading.

3. Preparation.

3.1 Overview.

3.2 Data sources.

3.3 Data understanding.

3.3.1 Data tables.

3.3.2 Continuous and discrete variables.

3.3.3 Scales of measurement.

3.3.4 Roles in analysis.

3.3.5 Frequency distribution.

3.4 Data preparation.

3.4.1 Overview.

3.4.2 Cleaning the data.

3.4.3 Removing variables.

3.4.4 Data transformations.

3.4.5 Segmentation.

3.5 Summary.

3.6 Exercises.

3.7 Further reading.

4. Tables and graphs.

4.1 Introduction.

4.2 Tables.

4.2.1 Data tables.

4.2.2 Contingency tables.

4.2.3 Summary tables.

4.3 Graphs.

4.3.1 Overview.

4.3.2 Frequency polygrams and histograms.

4.3.3 Scatterplots.

4.3.4 Box plots.

4.3.5 Multiple graphs.

4.4 Summary.

4.5 Exercises.

4.6 Further reading.

5. Statistics.

5.1 Overview.

5.2 Descriptive statistics.

5.2.1 Overview.

5.2.2 Central tendency.

5.2.3 Variation.

5.2.4 Shape.

5.2.5 Example.

5.3 Inferential statistics.

5.3.1 Overview.

5.3.2 Confidence intervals.

5.3.3 Hypothesis tests.

5.3.4 Chi-square.

5.3.5 One-way analysis of variance.

5.4 Comparative statistics.

5.4.1 Overview.

5.4.2 Visualizing relationships.

5.4.3 Correlation coefficient (r).

5.4.4 Correlation analysis for more than two variables.

5.5 Summary.

5.6 Exercises.

5.7 Further reading.

6. Grouping.

6.1 Introduction.

6.1.1 Overview.

6.1.2 Grouping by values or ranges.

6.1.3 Similarity measures.

6.1.4 Grouping approaches.

6.2 Clustering.

6.2.1 Overview.

6.2.2 Hierarchical agglomerative clustering.

6.2.3 K-means clustering.

6.3 Associative rules.

6.3.1 Overview.

6.3.2 Grouping by value combinations.

6.3.3 Extracting rules from groups.

6.3.4 Example.

6.4 Decision trees.

6.4.1 Overview.

6.4.2 Tree generation.

6.4.3 Splitting criteria.

6.4.4 Example.

6.5 Summary.

6.6 Exercises.

6.7 Further reading.

7. Prediction.

7.1 Introduction.

7.1.1 Overview.

7.1.2 Classification.

7.1.3 Regression.

7.1.4 Building a prediction model.

7.1.5 Applying a prediction model.

7.2 Simple regression models.

7.2.1 Overview.

7.2.2 Simple linear regression.

7.2.3 Simple nonlinear regression.

7.3 K-nearest neighbors.

7.3.1 Overview.

7.3.2 Learning.

7.3.3 Prediction.

7.4 Classification and regression trees.

7.4.1 Overview.

7.4.2 Predicting using decision trees.

7.4.3 Example.

7.5 Neural networks.

7.5.1 Overview.

7.5.2 Neural network layers.

7.5.3 Node calculations.

7.5.4 Neural network predictions.

7.5.5 Learning process.

7.5.6 Backpropagation.

7.5.7 Using neural networks.

7.5.8 Example.

7.6 Other methods.

7.7 Summary.

7.8 Exercises.

7.9 Further reading.

8. Deployment.

8.1 Overview.

8.2 Deliverables.

8.3 Activities.

8.4 Deployment scenarios.

8.5 Summary.

8.6 Further reading.

9. Conclusions.

9.1 Summary of process.

9.2 Example.

9.2.1 Problem overview.

9.2.2 Problem definition.

9.2.3 Data preparation.

9.2.4 Implementation of the analysis.

9.2.5 Deployment of the results.

9.3 Advanced data mining.

9.3.1 Overview.

9.3.2 Text data mining.

9.3.3 Time series data mining.

9.3.4 Sequence data mining.

9.4 Further reading.

Appendix A Statistical tables.

A.1 Normal distribution.

A.2 Student’s t-distribution.

A.3 Chi-square distribution.

A.4 F-distribution.

Appendix B Answers to exercises.

Glossary.

Bibliography.

Index.

藤椅
huhurabbit(真实交易用户) 发表于 2010-9-30 09:33:49
下来看看~~

板凳
yang198525(未真实交易用户) 发表于 2011-11-17 11:32:00
thanks!!!!!!!

报纸
Crsky7(未真实交易用户) 发表于 2012-9-9 00:13:46
这是第一部曲。

地板
jgchen1966(真实交易用户) 发表于 2012-11-16 23:16:04
不错,谢谢了。
鹑居鷇食,鸟行无彰

7
海的方向(真实交易用户) 发表于 2013-8-26 22:07:10
DING~~!
投我以木瓜,报之以琼琚,匪报也,永以为好也.天之道,以有余而补不足。

8
林海忠(未真实交易用户) 发表于 2013-8-27 08:59:40 来自手机
顶一下

9
andrealeaf(真实交易用户) 发表于 2014-9-6 15:30:25
Crsky7 发表于 2012-9-9 00:13
这是第一部曲。
不错的书籍

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-2-16 06:48