楼主: zengyongHUST
1836 0

[stata资源分享] Treatment effects [推广有奖]

  • 1关注
  • 0粉丝

大专生

65%

还不是VIP/贵宾

-

威望
0
论坛币
309 个
通用积分
0.1697
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
195 点
帖子
12
精华
0
在线时间
91 小时
注册时间
2015-12-12
最后登录
2022-5-2

楼主
zengyongHUST 发表于 2017-7-20 10:06:22 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
[size=14.666666984558105px]Highlights
  • Estimators
    • Inverse probability weights (IPW)
    • Propensity-score matching
    • Covariate matching
    • Regression adjustment
    • Doubly robust methods
      • Augmented IPW (AIPW)
      • IPW with regression adjustment
  • Features
    • Multilevel and multivalued treatments
    • Average treatment effects (ATEs)
    • ATEs on the treated (ATETs)
    • Potential-outcome means (POMs)
    • Continuous, binary, and count outcomes
  • Endogenous treatment estimators
    • Linear regression
    • Poisson regression




Show me

[size=14.666666984558105px]Treatment effects measure the causal effect of a treatment on an outcome.

[size=14.666666984558105px]A treatment is a new drug regimen, a surgical procedure, a training program, or even an ad campaign intended to affect an outcome such as blood pressure, mobility, employment, or sales.

[size=14.666666984558105px]In the best of worlds, we would measure the difference in outcomes by designing an experiment that assigns subjects randomly to the treatment and the control group.

[size=14.666666984558105px]We can't always do that. When we need to make do with observational data—when the subjects themselves choose whether to be treated or the choice is otherwise nonrandom—we need more statistical machinery.

[size=14.666666984558105px]teffects provides that machinery.

[size=14.666666984558105px]Say we have a training program in which participants enroll voluntarily. In the raw data, participants do poorly relative to nonparticipants, even after the training. Even so, the training program might have improved their outcomes—say, hourly wages—over what they would have been.

[size=14.666666984558105px]There are different treatment-effects estimators for different situations.

[size=14.666666984558105px]When we know the determinants of participation, the appropriate estimators include IPW and propensity-score matching. We might type

. teffects ipw     (wage) (trained x1 x2). teffects psmatch (wage) (trained x1 x2)

[size=14.666666984558105px]When we instead know the determinants of outcome, the appropriate estimators include regression adjustment and covariate matching. We might type

. teffects ra      (wage x1 x3) (trained). teffects nnmatch (wage x1 x3) (trained)

[size=14.666666984558105px]When we know both, we can use the doubly robust estimators—augmented IPW and IPW with regression adjustment. We might type

. teffects aipw  (wage x1 x3) (trained x1 x2). teffects ipwra (wage x1 x3) (trained x1 x2)

[size=14.666666984558105px]Surprisingly, we only need to be right about one of the specifications—wage needs to be a function of x1 and x3, or trained needs to be a function of x1 and x2. This is a feature of the doubly robust methods.

[size=14.666666984558105px]To obtain the doubly robust IPW regression-adjusted results, we type

. teffects ipwra (wage x1 x3) (trained x1 x2)Iteration 0:   EE criterion =  2.523e-16  Iteration 1:   EE criterion =  3.861e-30  Treatment-effects estimation                    Number of obs      =      1000Estimator      : IPW regression adjustmentOutcome model  : linearTreatment model: logit
               Robust
        wage       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
ATE         
     trained
   (1 vs 0)      .4646677    .080218     5.79   0.000     .3074432    .6218921
POmean
     trained
          0      8.275523   .0628417   131.69   0.000     8.152356    8.398691

[size=14.666666984558105px]The output reveals that the average treatment effect (ATE)—the effect we would have observed had the entire population been treated—is 0.46, meaning 46 cents more in the wage. The output also shows that the baseline wage, the average wage in the population had no one been treated, is estimated to be $8.28.

[size=14.666666984558105px]We might instead want to know the causal effect among those who get the treatment, known as the average treatment effect on the treated or ATET. We can estimate the ATET by adding the atet option,

. teffects ipwra (wage x1 x3) (trained x1 x2), atetIteration 0:   EE criterion =  2.523e-16  Iteration 1:   EE criterion =  3.393e-30  Treatment-effects estimation                    Number of obs      =      1000Estimator      : IPW regression adjustmentOutcome model  : linearTreatment model: logit
               Robust
        wage       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
ATET         
     trained
   (1 vs 0)      .8212578   .0948967     8.65   0.000     .6352636    1.007252
POmean      
     trained
          0      7.974128   .0886919    89.91   0.000     7.800295     8.14796

[size=14.666666984558105px]The ATET is 82 cents per hour over the baseline wage of $7.97, which is the average wage that would be observed if those who got the treatment had not gotten it.

Show me more

[size=14.666666984558105px]We have only scratched the surface of what teffects can do.

[size=14.666666984558105px]See the all-new 158-page Treatment-Effects Reference Manual, especially the introduction.

[size=14.666666984558105px]See New in Stata 15 for more about what was added in Stata 15.


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:treatment effects Effect treat FECT

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-2 01:27