楼主: Reader's
3365 24

【独家发布】Statistics for Machine Learning [推广有奖]

  • 0关注
  • 0粉丝

已卖:1521份资源

博士生

59%

还不是VIP/贵宾

-

TA的文库  其他...

可解釋的機器學習

Operations Research(运筹学)

国际金融(Finance)

威望
0
论坛币
41198 个
通用积分
2.6173
学术水平
7 点
热心指数
5 点
信用等级
5 点
经验
2201 点
帖子
198
精华
1
在线时间
36 小时
注册时间
2015-6-1
最后登录
2024-3-3

楼主
Reader's 发表于 2017-8-2 07:17:48 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

  1. Statistics for Machine Learning
  2. Authors: Pratap Dangeti

  3. ISBN-10 书号: 1788295757

  4. ISBN-13 书号: 9781788295758

  5. Release 出版日期: 2017-09-06

  6. pages 页数: (311)


  7. 49.99

  8. Book Description
  9. Key Features
  10. Learn about the statistics behind powerful predictive models with p-value, ANOVA, F-statistics.
  11. Implement statistical computations programmatically for supervised and unsupervised learning through K-means clustering.
  12. Master the statistical aspect of machine learning with the help of this example-rich guide in R & Python.
  13. Book Description
  14. Complex statistics in machine learning worries a lot of developers. Knowing statistics helps in building strong machine learning models that are optimized for a given problem statement. This book will teach you all it takes to perform complex statistical computations required for machine learning. You will gain information on statistics behind supervised learning, unsupervised learning, reinforcement learning, and more. You will see real-world examples that discuss the statistical side of machine learning and make you comfortable with it. You will come across programs for performing tasks such as model, parameters fitting, regression, classification, density collection, working with vectors, matrices, and more.By the end of the book, you will understand concepts of required statistics for Machine Learning and will be able to apply your new skills to any sort of industry problems.

  15. What you will learn
  16. Understanding Statistical & Machine learning fundamentals necessary to build models
  17. Understanding major differences & parallels between statistics way of solving problem & machine learning way of solving problem
  18. Know how to prepare data and “feed” the models by using the appropriate machine learning algorithms from the adequate R & Python packages
  19. Analyze the results and tune the model appropriately to his or her own predictive goals
  20. Understand concepts of required statistics for Machine Learning
  21. Draw parallels between statistics and machine learning
  22. Understand each component of machine learning models and see impact of changing them
  23. Contents
  24. Chapter 1. Questions
  25. Chapter 2. Journey From Statistics To Machine Learning
  26. Chapter 3. Parallelism Of Statistics And Machine Learning
  27. Chapter 4. Logistic Regression Versus Random Forest
  28. Chapter 5. Tree-Based Machine Learning Models
  29. Chapter 6. K-Nearest Neighbors And Naive Bayes
  30. Chapter 7. Support Vector Machines And Neural Networks
  31. Chapter 8. Recommendation Engines
  32. Chapter 9. Unsupervised Learning
  33. Chapter 10. Reinforcement Learning
复制代码

本帖隐藏的内容

Statistics for Machine Learning.pdf (19.03 MB, 需要: 5 个论坛币)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Statistics statistic Learning Statist earning

本帖被以下文库推荐

沙发
yazxf(真实交易用户) 发表于 2017-8-2 07:54:08
很感谢你的书!

藤椅
西门高(未真实交易用户) 发表于 2017-8-2 08:19:01
谢谢分享

板凳
啸傲江弧(真实交易用户) 发表于 2017-8-2 08:27:26
Thanks for sharing!

报纸
啸傲江弧(真实交易用户) 发表于 2017-8-2 08:29:10

地板
NOTHINGWMM(未真实交易用户) 发表于 2017-8-2 08:41:59
谢谢分享
本文来自: 人大经济论坛 winbugs及其他软件专版 版,详细出处参考: https://bbs.pinggu.org/forum.php?mod=viewthread&tid=5895851&page=1

7
franky_sas(未真实交易用户) 发表于 2017-8-2 13:02:44

8
lianqu(未真实交易用户) 发表于 2017-8-3 09:46:12

9
ReneeBK(未真实交易用户) 发表于 2017-8-3 23:02:56

10
elephann(真实交易用户) 发表于 2017-8-5 13:38:13

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-9 04:05