如下结果是用nlogit软件跑的mixlogit模型结果 不知道为什么参数估计值特别大 这是因为什么呢? 有什么方法可以解决呢?小白初学逻辑回归求大神指点
Random Coefficients Logit Model
Dependent variable SEVER1
Log likelihood function -5270.35937
Restricted log likelihood -5329.08480
Chi squared [ 28](P= .000) 117.45087
Significance level .00000
McFadden Pseudo R-squared .0110198
Estimation based on N = 13002, K = 56
Inf.Cr.AIC = 10652.7 AIC/N = .819
Sample is 1 pds and 13002 individuals
Simulation based on 200 Halton draws
LOGIT (Logistic) probability model
--------+--------------------------------------------------------------------
| Standard Prob. 95% Confidence
SEVER1| Coefficient Error z |z|>Z* Interval
--------+--------------------------------------------------------------------
|Means for random parameters
Constant| -31587.9*** 356.9553 -88.49 .0000 -32287.5 -30888.3
DIST1| -15072.7*** 111.0725 -135.70 .0000 -15290.4 -14855.0
DIST2| -13877.1*** 88.25301 -157.24 .0000 -14050.0 -13704.1
NO_CSU3| 29089.5*** 187.2505 155.35 .0000 28722.5 29456.5
NO_CSU2| 10179.7*** 159.1568 63.96 .0000 9867.7 10491.6
SPEED1| -11594.6*** 709.3577 -16.35 .0000 -12984.9 -10204.3
SPEED3| 9237.17*** 189.4180 48.77 .0000 8865.92 9608.42
JCNCTRL1| -6405.05*** 335.7094 -19.08 .0000 -7063.02 -5747.07
JCNCTRL2| -12181.6*** 301.2733 -40.43 .0000 -12772.1 -11591.2
RDTYPE2| 6092.73*** 48.34433 126.03 .0000 5997.97 6187.48
RDTYPE3| -2412.55*** 111.9342 -21.55 .0000 -2631.94 -2193.16
VEHMOVE2| -20135.3*** 93.14294 -216.18 .0000 -20317.8 -19952.7
VEHMOVE3| -5641.80*** 500.0155 -11.28 .0000 -6621.81 -4661.78
VEHMOVE4| -5320.77*** 372.5544 -14.28 .0000 -6050.96 -4590.57
PEDESTRI| 32856.4*** 75.05322 437.77 .0000 32709.3 33003.5
BYCICLE_| -269081*** 229.4042 -1172.96 .0000 -269530 -268631
MOTOCYCL| 20628.7*** 76.05285 271.24 .0000 20479.7 20777.8
GOODSVCL| 6310.22*** 136.3396 46.28 .0000 6043.00 6577.44
TAXI_INV| 10596.3*** 93.16660 113.73 .0000 10413.7 10778.9
MEAN_5M| -103.651*** 2.13912 -48.45 .0000 -107.843 -99.458
STD_5A| -83.5758*** .72332 -115.54 .0000 -84.9935 -82.1581
STD_5M| -352.007*** 94.24242 -3.74 .0002 -536.719 -167.295
B5A3| -7570.08*** 40.97326 -184.76 .0000 -7650.38 -7489.77
B5A4| -4308.58*** 69.13306 -62.32 .0000 -4444.08 -4173.08
J501| -3453.14*** 57.68450 -59.86 .0000 -3566.20 -3340.08
J52| -11292.3*** 62.87638 -179.60 .0000 -11415.5 -11169.1
J54| -2655.24*** 84.80540 -31.31 .0000 -2821.45 -2489.02
SUM_15T| -198.351*** 4.76569 -41.62 .0000 -207.691 -189.010
|Scale parameters for dists. of random parameters
Constant| 20063.5*** 53.73866 373.35 .0000 19958.1 20168.8
DIST1| 47896.1*** 102.9997 465.01 .0000 47694.2 48098.0
DIST2| 5124.09*** 106.2207 48.24 .0000 4915.90 5332.28
NO_CSU3| 2220.81*** 217.9252 10.19 .0000 1793.68 2647.94
NO_CSU2| 7869.78*** 243.6899 32.29 .0000 7392.15 8347.40
SPEED1| 77631.1*** 949.0519 81.80 .0000 75771.0 79491.2
SPEED3| 7845.51*** 286.4688 27.39 .0000 7284.04 8406.98
JCNCTRL1| 47414.6*** 257.0600 184.45 .0000 46910.7 47918.4
JCNCTRL2| 55281.4*** 85.15195 649.21 .0000 55114.5 55448.3
RDTYPE2| 2516.35*** 66.48495 37.85 .0000 2386.04 2646.65
RDTYPE3| 38480.7*** 237.6164 161.94 .0000 38015.0 38946.5
VEHMOVE2| 4610.61*** 114.1829 40.38 .0000 4386.81 4834.40
VEHMOVE3| 25437.6*** 689.4685 36.89 .0000 24086.2 26788.9
VEHMOVE4| 20922.5*** 400.3523 52.26 .0000 20137.9 21707.2
PEDESTRI| 128.916* 70.52106 1.83 .0675 -9.303 267.135
BYCICLE_| 517834*** 404.6310 1279.77 .0000 517041 518627
MOTOCYCL| 39514.6*** 75.46951 523.58 .0000 39366.7 39662.6
GOODSVCL| 14466.1*** 164.0681 88.17 .0000 14144.5 14787.6
TAXI_INV| 14757.7*** 91.60859 161.10 .0000 14578.2 14937.3
MEAN_5M| 176.521*** .41580 424.53 .0000 175.706 177.336
STD_5A| 280.284*** 1.53542 182.55 .0000 277.275 283.293
STD_5M| 26311.7*** 68.10146 386.36 .0000 26178.2 26445.1
B5A3| 24651.1*** 52.35835 470.82 .0000 24548.5 24753.7
B5A4| 8857.20*** 99.76755 88.78 .0000 8661.66 9052.74
J501| 10167.7*** 64.09442 158.64 .0000 10042.0 10293.3
J52| 49072.2*** 81.97143 598.65 .0000 48911.5 49232.8
J54| 29526.1*** 181.5723 162.61 .0000 29170.2 29882.0
SUM_15T| 325.780*** 7.08341 45.99 .0000 311.897 339.663
--------+--------------------------------------------------------------------
***, **, * ==> Significance at 1%, 5%, 10% level.
Model was estimated on Aug 05, 2009 at 05:54:23 AM
-----------------------------------------------------------------------------


雷达卡



京公网安备 11010802022788号







