正在学习二值选择模型
probit EXP LTFP_ IFN_ credit_ TC_ lnCI_ lnWAGE_ lnSCALE_ lnCGE EER east state private i.Year i.industry_1
结果如下:
Probit regression Number of obs = 3,950
LR chi2(29) = 669.12
Prob > chi2 = 0.0000
Log likelihood = -1460.6318 Pseudo R2 = 0.1864
------------------------------------------------------------------------------
EXP | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
LTFP_ | .1377327 .0363151 3.79 0.000 .0665565 .208909
IFN_ | -.3571548 .2114164 -1.69 0.091 -.7715234 .0572137
credit_ | -.0271081 .0104306 -2.60 0.009 -.0475517 -.0066646
TC_ | -.2946944 .3546477 -0.83 0.406 -.9897912 .4004024
lnCI_ | -.14713 .0258681 -5.69 0.000 -.1978305 -.0964295
lnWAGE_ | .2655328 .0521834 5.09 0.000 .1632551 .3678105
lnSCALE_ | .1421656 .02334 6.09 0.000 .09642 .1879111
lnCGE | -.530464 1.793018 -0.30 0.767 -4.044715 2.983787
EER | .0046939 .0193396 0.24 0.808 -.033211 .0425987
east | .2676608 .0673352 3.98 0.000 .1356863 .3996353
state | .7341381 .3011248 2.44 0.015 .1439444 1.324332
private | .7241789 .302252 2.40 0.017 .1317759 1.316582
其中,LTFP_ credit_ lnCI_ 等都显著
采用 xtprobit EXP LTFP_ IFN_ credit_ TC_ lnCI_ lnWAGE_ lnSCALE_ lnCGE EER east state private i.industry_1
结果如下
Wald chi2(22) = 109.83
Log likelihood = -698.2172 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
EXP | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
LTFP_ | .0275911 .1050773 0.26 0.793 -.1783566 .2335388
IFN_ | -1.269475 .5114168 -2.48 0.013 -2.271834 -.2671167
credit_ | -.0639701 .029964 -2.13 0.033 -.1226984 -.0052418
TC_ | -.3574267 1.179838 -0.30 0.762 -2.669867 1.955013
lnCI_ | -.0487584 .0745863 -0.65 0.513 -.194945 .0974281
lnWAGE_ | .1990472 .1528808 1.30 0.193 -.1005937 .4986881
lnSCALE_ | .2249718 .0825844 2.72 0.006 .0631094 .3868342
lnCGE | -.6434658 .6207339 -1.04 0.300 -1.860082 .5731502
EER | .0175855 .009643 1.82 0.068 -.0013145 .0364854
east | .950682 .3700101 2.57 0.010 .2254756 1.675888
state | -.310464 .5923253 -0.52 0.600 -1.4714 .8504723
private | .2162926 .552352 0.39 0.695 -.8662975 1.298883
结果 LTFP_ lnCI_ lnWAGE_ 等显著性降低
能否有好心的大神帮忙解答一下


雷达卡





京公网安备 11010802022788号







