. xthreg c (m s u i ), rx(y) qx(m) thnum(2) grid(100) trim(0.05 0.05) bs(1000 1000
> )
Estimating the threshold parameters: 1st ...... 2nd ...... Done
Boostrap for single threshold
.................................................. + 50
.................................................. + 100
.................................................. + 150
.................................................. + 200
.................................................. + 250
.................................................. + 300
.................................................. + 350
.................................................. + 400
.................................................. + 450
.................................................. + 500
.................................................. + 550
.................................................. + 600
.................................................. + 650
.................................................. + 700
.................................................. + 750
.................................................. + 800
.................................................. + 850
.................................................. + 900
.................................................. + 950
.................................................. + 1000
Boostrap for double threshold model:
.................................................. + 50
.................................................. + 100
.................................................. + 150
.................................................. + 200
.................................................. + 250
.................................................. + 300
.................................................. + 350
.................................................. + 400
.................................................. + 450
.................................................. + 500
.................................................. + 550
.................................................. + 600
.................................................. + 650
.................................................. + 700
.................................................. + 750
.................................................. + 800
.................................................. + 850
.................................................. + 900
.................................................. + 950
.................................................. + 1000
Threshold estimator (level = 95):
-----------------------------------------------------
model | Threshold Lower Upper
-----------+-----------------------------------------
Th-1 | 0.3946 0.3943 0.3955
Th-21 | 0.3946 0.3943 0.3955
Th-22 | 0.4163 0.4156 0.4194
-----------------------------------------------------
Threshold effect test (bootstrap = 1000 1000):
-------------------------------------------------------------------------------
Threshold | RSS MSE Fstat Prob Crit10 Crit5 Crit1
-----------+-------------------------------------------------------------------
Single | 9.02e+07 3.11e+05 4.01 0.8740 20.1621 25.8616 38.3787
Double | 8.91e+07 3.07e+05 3.57 0.7830 13.1762 15.6489 24.5966
-------------------------------------------------------------------------------
Fixed-effects (within) regression Number of obs = 300
Group variable: province Number of groups = 30
R-sq: within = 0.6205 Obs per group: min = 10
between = 0.0067 avg = 10.0
overall = 0.0198 max = 10
F(7,263) = 61.44
corr(u_i, Xb) = -0.1629 Prob > F = 0.0000
------------------------------------------------------------------------------
c | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
m | -257.6355 1922.875 -0.13 0.894 -4043.824 3528.553
s | 7790.36 604.4342 12.89 0.000 6600.214 8980.506
u | 4050.905 2081.278 1.95 0.053 -47.183 8148.993
i | -11672.9 2329.891 -5.01 0.000 -16260.52 -7085.29
|
_cat#c.y |
0 | .0294806 .0401336 0.73 0.463 -.0495434 .1085046
1 | .0449858 .0400281 1.12 0.262 -.0338304 .1238021
2 | .0317576 .0375941 0.84 0.399 -.0422661 .1057813
|
_cons | -2438.824 1569.149 -1.55 0.121 -5528.517 650.8695
-------------+----------------------------------------------------------------
sigma_u | 4848.7011
sigma_e | 582.03597
rho | .98579519 (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0: F(29, 263) = 580.95 Prob > F = 0.0000
小白一枚,在一步一步摸索门槛分析中,求助各位大神,上述结果解读。


雷达卡






京公网安备 11010802022788号







