楼主: temporarytemp
9161 16

(Wiley Series): Simulation and the Monte Carlo Method [推广有奖]

  • 0关注
  • 5粉丝

已卖:2524份资源

博士生

3%

还不是VIP/贵宾

-

威望
0
论坛币
24425 个
通用积分
35.8222
学术水平
7 点
热心指数
10 点
信用等级
7 点
经验
9309 点
帖子
119
精华
0
在线时间
251 小时
注册时间
2008-11-7
最后登录
2023-4-24

楼主
temporarytemp 发表于 2009-10-27 21:53:48 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
包含Wiley Series中的 Simulation and the Monte Carlo Method (2ed) by Reuven Y. Rubinstein and Dirk P. Kroese
Simulation and the Monte Carlo Method
目录
Preface.
Acknowledgments.
1. Preliminaries 1.
1.1 Random Experiments.
1.2 Conditional Probability and Independence.
1.3 Random Variables and Probability Distributions.
1.4 Some Important Distributions.
1.5 Expectation.
1.6 Joint Distributions.
1.7 Functions of Random Variables.
1.8 Transforms.
1.9 Jointly Normal Random Variables.
1.10 Limit Theorems.
1.11 Poisson Processes.
1.12 Markov Processes.
1.12.1 Markov Chains.
1.12.2 Markov Jump Processes.
1.13 Efficiency of Estimators.
1.14 Information.
1.15 Convex Optimization and Duality.
1.15.1 Lagrangian Method.
1.15.2 Duality.
Problems.
References.

2. Random Number, Random Variable and Stochastic Process Generation.
2.1 Introduction.
2.2 Random Number Generation.
2.3 Random Variable Generation.
2.3.1 Inverse-Transform Method.
2.3.2 Alias Method.
2.3.3 Composition Method.
2.3.4 Acceptance-Rejection Method.
2.4 Generating From Commonly Used Distributions.
2.4.1 Generating Continuous Random Variables.
2.4.2 Generating Discrete Random Variables.
2.5 Random Vector Generation.
2.5.1 Vector Acceptance-Rejection Method.
2.5.2 Generating Variables From a Multinormal Distribution.
2.5.3 Generating Uniform Random Vectors Over a Simplex.
2.5.4 Generating Random Vectors, Uniformly Distributed Over a Unit Hyper-Ball and Hyper-Sphere.
2.5.5 Generating Random Vectors, Uniformly Distributed Over a Hyper-Ellipsoid.
2.6 Generating Poisson Processes.
2.7 Generating Markov Chains and Markov Jump Processes.
2.8 Generating Random Permutations.
Problems.
References.

3. Simulation of Discrete Event Systems.
3.1 Simulation Models.
3.2 Simulation Clock and Event List for DEDS.
3.3 Discrete Event Simulation.
3.3.1 Tandem Queue.
3.3.2 Repairman Problem.
Problems.
References.

4. Statistical Analysis of Discrete Event Systems.
4.1 Introduction.
4.2 Static Simulation Models.
4.3 Dynamic Simulation Models.
4.3.1 Finite-Horizon Simulation.
4.3.2 Steady-State Simulation.
4.4 The Bootstrap Method.
Problems.
References.

5. Controlling the Variance.
5.1 Introduction.
5.2 Common and Antithetic Random Variables.
5.3 Control Variables.
5.4 Conditional Monte Carlo.
5.4.1 Variance Reduction for Reliability Models.
5.5 Stratified Sampling.
5.6 Importance Sampling.
5.6.1 The Variance Minimization Method.
5.6.2 The Cross-Entropy Method.
5.7 Sequential Importance Sampling.
5.7.1 Non-linear Filtering for Hidden Markov Models.
5.8 The Transform Likelihood Ratio Method.
5.9 Preventing the Degeneracy of Importance Sampling.
5.9.1 The Two-Stage Screening Algorithm.
5.9.2 Case Study.
Problems.
References.

6. Markov Chain Monte Carlo.
6.1 Introduction.
6.2 The Metropolis-Hastings Algorithm.
6.3 The Hit-and-Run Sampler.
6.4 The Gibbs Sampler.
6.5 Ising and Potts Models.
6.6 Bayesian Statistics.
6.7 Other Markov Samplers.
6.8 Simulated Annealing.
6.9 Perfect Sampling.
Problems.
References.

7. Sensitivity Analysis and Monte Carlo Optimization.
7.1 Introduction.
7.2 The Score Function Method for Sensitivity Analysis of DESS.
7.3 Simulation-Based Optimization of DESS.
7.3.1 Stochastic Approximation.
7.3.2 The Stochastic Counterpart Method.
7.4 Sensitivity Analysis of DEDS.
Problems.
References.

8. The Cross-Entropy Method.
8.1 Introduction.
8.2 Estimation of Rare Event Probabilities.
8.2.1 The Root-Finding Problem.
8.2.2 The Screening Method for Rare Events.
8.3 The CE-Method for Optimization.
8.4 The Max-cut Problem.
8.5 The Partition Problem.
8.6 The Travelling Salesman Problem.
8.6.1 Incomplete Graphs.
8.6.2 Node Placement.
8.6.3 Case Studies.
8.7 Continuous Optimization.
8.8 Noisy Optimization.
Problems.
References.

9. Counting via Monte Carlo.
9.1 Counting Problems.
9.2 Satisfiability Problem.
9.2.1 Random K-SAT (K-RSAT).
9.3 The Rare-Event Framework for Counting.
9.3.1 Rare-Events for the Satisfiability Problem.
9.4 Other Randomized Algorithms for Counting.
9.4.1 Complexity of Randomized Algorithms: FPRAS and FPAUS.
9.5 MinxEnt and Parametric MinxEnt.
9.5.1 The MinxEnt Method.
9.5.2 Rare-Event Probability Estimation Using PME.
9.6 PME for COPs and Decision Making.
9.7 Numerical Results.
problems.
References.

Appendix A.
A.1 Cholesky Square Root Method.
A.2 Exact Sampling from a Conditional Bernoulli Distribution.
A.3 Exponential Families.
A.4 Sensitivity Analysis.
A.4.1 Convexity Results.
A.4.2 Monotonicity Results.
A.5 A simple implementation of the CE algorithm for optimizing the 'peaks' function.
A.6 Discrete-time Kalman Filter.
A.7 Bernoulli Disruption Problem.
A.8 Complexity of Stochastic Programming Problems.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Monte Carlo Simulation ulation Series Method Probability Simulation Statistics mcmc

Simulation and the Monte Carlo Method (2ed).zip
下载链接: https://bbs.pinggu.org/a-439773.html

13.71 MB

需要: 10 个论坛币  [购买]

本附件包括:

  • Simulation and the Monte Carlo Method (2ed).pdf

沙发
deadknight10(真实交易用户) 发表于 2009-10-27 22:13:32
谢谢楼主!

藤椅
mnzhang(真实交易用户) 发表于 2009-10-27 22:29:53
为什么下来后打不开呢?

板凳
temporarytemp(未真实交易用户) 发表于 2009-10-27 23:25:21
刚才试了,打开是没问题的。
如果你打不开,把你的邮箱发给我吧,要大点的。
我把文件发到你邮箱里。

报纸
qxixi(真实交易用户) 发表于 2009-10-28 00:41:05
Thank you so much! I've been looking for it for a while!

地板
temporarytemp(未真实交易用户) 发表于 2009-10-28 23:20:41
the pleasure is mine if it can be of some help.

7
luckhh12345678(未真实交易用户) 发表于 2009-11-29 11:04:21
1# temporarytemp

好书 正在找它呢

8
40511060(未真实交易用户) 发表于 2010-3-23 23:07:38
好贵啊。。。谁能传个免费的

9
zhengheming(未真实交易用户) 发表于 2010-4-5 19:52:07
ZHICHI MIANFEI

10
qingliwang(真实交易用户) 发表于 2010-4-8 10:14:33
不错的 谢谢

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-14 20:25