楼主: 人工智能-AI
1176 1

机器学习算法和Hargreaves模型在四川盆地ET_0计算中的比较 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2017-9-15 16:40:05 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:以四川盆地中部遂宁气象站2001-2010年逐日温度资料和大气顶层辐射(Ra)为输入参数,以FAO-56Penman-Monteith(PM)模型计算的参考作物蒸散量(ET0)为标准,分别利用广义回归神经网络(GRNN)和小波神经网络(WNN)两种机器学习算法建立ET0模拟模型,并对GRNN、WNN和Hargreaves(HS1)与两种改进的Hargreaves(HS2和HS3)模型的ET0模拟效果进行对比分析,利用2011-2014年数据对各模型模拟精度进行验证,分析仅有温度资料时不同模型在四川盆地的适用性。结果表明:GRNN模型和WNN模型均具有较强的适用性,GRNN模型均方根误差(RMSE)、模型效率系数(Ens)和决定系数(R2)分别为0.395mm?d~(-1)、0.924和0.902,WNN模型分别为0.401mm?d~(-1)、0.911和0.901,且两种模型计算精度均高于HS1(1.05mm?d~(-1)、0.885和0.334)、HS2(0.652mm?d~(-1)、0.892和0.736)和HS3(0.550mm?d~(-1)、0.881和0.812)模型。模型适用性验证进一步表明,GRNN和WNN模型在四川盆地西部和东部也具有较好的适用性,在输入参数中引入Ra能提高模型的模拟精度。因此,GRNN和WNN可以作为气象资料缺失条件下四川盆地ET0计算的推荐模型,且GRNN计算精度高于WNN,可优先选用。

原文链接:http://www.cqvip.com/QK/92555X/201604/669789391.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Greaves 机器学习算法 学习算法 四川盆地 机器学习 参考作物蒸散量 温度资料 FAO-56 Penman-Monteith模型 机器学习算法

沙发
钱学森64 发表于 2017-9-15 16:57:14
谢谢分享

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 21:03