楼主: 论文库
1047 0

基于机器学习算法的前列腺癌诊断模型研究 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2017-9-16 05:00:03 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:目的基于机器学习的3种算法建立诊断预测模型,比较3种模型对前列腺癌的诊断价值。方法选择2008~2014年在中国人民解放军总医院进行前列腺穿刺活检的患者956例(其中前列腺癌463例,前列腺增生493例),采用Logistic回归分析,筛选出预测因子(年龄、游离之前列腺特异抗原、游离之前列腺特异抗原百分比、前列腺体积和前列腺特异性抗原密度)。应用基于机器学习的BP神经网络、Logistic回归和随机森林算法构建诊断预测模型,比较3种模型对前列腺癌的预测准确性。结果 Logistic回归、BP神经网络和随机森林模型对前列腺癌的诊断能力比任一单项指标都高,3种模型的灵敏度分别为77.5%、77.4%、76.2%,特异度分别为74.8%、76.8%、76.9%,精确度分别为76%、77%、77%,受试者工作特征曲线下面积(AUC)分别为0.831、0.832、0.833,3种模型对前列腺癌的诊断能力没有显著性差异。结论上述结果验证了3种模型均具有较高的诊断有效性,可将模型纳入泌尿决策,协助临床医生对前列腺癌患者进行诊断和治疗,并减少不必要的活检。

原文链接:http://www.cqvip.com/QK/97351X/201604/668561963.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:机器学习算法 机器学习 学习算法 前列腺癌 前列腺 前列腺癌 前列腺增生 诊断模型 LOGISTIC回归 BP神经网络

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-2 00:45