楼主: Lisrelchen
1228 5

Domain Adaptation in Computer Vision Applications [推广有奖]

  • 0关注
  • 62粉丝

VIP

已卖:4194份资源

院士

67%

还不是VIP/贵宾

-

TA的文库  其他...

Bayesian NewOccidental

Spatial Data Analysis

东西方数据挖掘

威望
0
论坛币
50288 个
通用积分
83.6306
学术水平
253 点
热心指数
300 点
信用等级
208 点
经验
41518 点
帖子
3256
精华
14
在线时间
766 小时
注册时间
2006-5-4
最后登录
2022-11-6

楼主
Lisrelchen 发表于 2017-9-16 07:51:31 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

本帖隐藏的内容

Domain Adaptation in Computer Vision Applications Springer 2016.pdf (14.24 MB, 需要: 5 个论坛币)

  1. Domain Adaptation in Computer Vision Applications (Advances in Computer Vision and Pattern Recognition)
  2. ISBN-10 书号: 3319583468

  3. ISBN-13 书号: 9783319583464
  4. Edition 版本: 1st ed. 2017

  5. Release 出版日期: 2017-10-11

  6. pages 页数 (344)

  7. List Price: $129


  8. Book Description
  9. This comprehensive text/reference presents a broad review of diverse domain adaptation (DA) methods for machine learning, with a focus on solutions for visual applications. The book collects together solutions and perspectives proposed by an international selection of pre-eminent experts in the field, addressing not only classical image categorization, but also other computer vision tasks such as detection, segmentation and visual attributes.
  10. Topics and features: surveys the complete field of visual DA, including shallow methods designed for homogeneous and heterogeneous data as well as deep architectures; presents a positioning of the dataset bias in the CNN-based feature arena; proposes detailed analyses of popular shallow methods that addresses landmark data selection, kernel embedding, feature alignment, joint feature transformation and classifier adaptation, or the case of limited access to the source data; discusses more recent deep DA methods, including discrepancy-based adaptation networks and adversarial discriminative DA models; addresses domain adaptation problems beyond image categorization, such as a Fisher encoding adaptation for vehicle re-identification, semantic segmentation and detection trained on synthetic images, and domain generalization for semantic part detection; describes a multi-source domain generalization technique for visual attributes and a unifying framework for multi-domain and multi-task learning.

  11. This authoritative volume will be of great interest to a broad audience ranging from researchers and practitioners, to students involved in computer vision, pattern recognition and machine learning.

  12. Contents
  13. Chapter 1 A Comprehensive Survey On Domain Adaptation For Visual Applications
  14. Chapter 2 A Deeper Look At Dataset Bias
  15. Part I Shallow Domain Adaptation Methods
  16. Chapter 3 Geodesic Flow Kernel And Landmarks: Kernel Methods For Unsupervised Domain Adaptation
  17. Chapter 4 Unsupervised Domain Adaptation Based On Subspace Alignment
  18. Chapter 5 Learning Domain Invariant Embeddings By Matching Distributions
  19. Chapter 6 Adaptive Transductive Transfer Machines: A Pipeline For Unsupervised Domain Adaptation
  20. Chapter 7 What To Do When The Access To The Source Data Is Constrained?

  21. Part II Deep Domain Adaptation Methods
  22. Chapter 8 Correlation Alignment For Unsupervised Domain Adaptation
  23. Chapter 9 Simultaneous Deep Transfer Across Domains And Tasks
  24. Chapter 10 Domain-Adversarial Training Of Neural Networks

  25. Part III Beyond Image Classification
  26. Chapter 11 Unsupervised Fisher Vector Adaptation For Re-Identification
  27. Chapter 12 Semantic Segmentation Of Urban Scenes Via Domain Adaptation Of Synthia
  28. Chapter 13 From Virtual To Real World Visual Perception Using Domain Adaptation—The Dpm As Example
  29. Chapter 14 Generalizing Semantic Part Detectors Across Domains

  30. Part IV Beyond Domain Adaptation: Unifying Perspectives
  31. Chapter 15 A Multisource Domain Generalization Approach To Visual Attribute Detection
  32. Chapter 16 Unifying Multi-Domain Multitask Learning: Tensor And Neural Network Perspectives
复制代码



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Applications Application Adaptation Computer compute

本帖被以下文库推荐

沙发
MouJack007(真实交易用户) 发表于 2017-9-16 07:59:35
谢谢楼主分享!

藤椅
MouJack007(真实交易用户) 发表于 2017-9-16 08:00:46

板凳
军旗飞扬(未真实交易用户) 在职认证  发表于 2017-9-16 09:09:57
谢谢楼主分享!

报纸
钱学森64(未真实交易用户) 发表于 2017-9-16 09:11:32
谢谢分享

地板
seoulcityyxx(真实交易用户) 在职认证  发表于 2017-9-16 22:17:15
aosi epwa

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-8 12:01