楼主: ReneeBK
3513 39

Deep Learning 101 using Paddle [推广有奖]

  • 1关注
  • 62粉丝

VIP

已卖:4900份资源

学术权威

14%

还不是VIP/贵宾

-

TA的文库  其他...

R资源总汇

Panel Data Analysis

Experimental Design

威望
1
论坛币
49655 个
通用积分
55.9937
学术水平
370 点
热心指数
273 点
信用等级
335 点
经验
57805 点
帖子
4005
精华
21
在线时间
582 小时
注册时间
2005-5-8
最后登录
2023-11-26

楼主
ReneeBK 发表于 2017-9-20 03:37:23 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Deep Learning with PaddlePaddle

Running the Book

This book you are reading is interactive -- each chapter can run as a Jupyter Notebook.

We packed this book, Jupyter, PaddlePaddle, and all dependencies into a Docker image. So you don't need to install anything except Docker. If you are using Windows, please follow this installation guide. If you are running Mac, please follow this. For various Linux distros, please refer to https://www.docker.com. If you are using Windows or Mac, you might want to give Docker more memory and CPUs/cores.

Just type

docker run -d -p 8888:8888 paddlepaddle/book

This command will download the pre-built Docker image from DockerHub.com and run it in a container. Please direct your Web browser to http://localhost:8888 to read the book.

If you are living in somewhere slow to access DockerHub.com, you might try our mirror server docker.paddlepaddle.org:

docker run -d -p 8888:8888 docker.paddlepaddle.org/book
Training with GPU

By default we are using CPU for training, if you want to train with GPU, the steps are a little different.

To make sure GPU can be successfully used from inside container, please install nvidia-docker. Then run:

nvidia-docker run -d -p 8888:8888 paddlepaddle/book:latest-gpu

Or you can use the image registry mirror in China:

nvidia-docker run -d -p 8888:8888 docker.paddlepaddle.org/book:latest-gpu

Change the code in the chapter that you are reading from

paddle.init(use_gpu=False, trainer_count=1)

to:

paddle.init(use_gpu=True, trainer_count=1)
Contribute

Your contribution is welcome! Please feel free to file Pull Requests to add your chapter as a directory under /pending. Once it is going stable, the community would like to move it to /.

To write, run, and debug your chapters, you will need Python 2.x, Go >1.5. You can build the Docker image using this script. This tutorial is contributed by PaddlePaddle, and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


本帖隐藏的内容

Deep Learning 101 Using Paddle.pdf (18.42 MB)


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


已有 1 人评分经验 学术水平 热心指数 信用等级 收起 理由
accumulation + 100 + 1 + 1 + 1 精彩帖子

总评分: 经验 + 100  学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

本帖被以下文库推荐

沙发
MouJack007 发表于 2017-9-20 09:22:59
  1. VGG

  2. Let’s start with the VGG model. Since the image size and amount of CIFAR10 are relatively small comparing to ImageNet, we use a small version of VGG network for CIFAR10. Convolution groups incorporate BN and dropout operations.

  3. Define input data and its dimension

  4. The input to the network is defined as paddle.layer.data, or image pixels in the context of image classification. The images in CIFAR10 are 32x32 color images of three channels. Therefore, the size of the input data is 3072 (3x32x32), and the number of categories is 10.

  5. datadim = 3 * 32 * 32
  6. classdim = 10
  7. image = paddle.layer.data(
  8.      name="image", type=paddle.data_type.dense_vector(datadim))
复制代码

已有 1 人评分论坛币 收起 理由
Nicolle + 20 鼓励积极发帖讨论

总评分: 论坛币 + 20   查看全部评分

藤椅
MouJack007 发表于 2017-9-20 09:23:29
  1. Define VGG main module

  2. net = vgg_bn_drop(image)
  3. The input to VGG main module is from the data layer. vgg_bn_drop defines a 16-layer VGG network, with each convolutional layer followed by BN and dropout layers. Here is the definition in detail:

  4. def vgg_bn_drop(input):
  5.      def conv_block(ipt, num_filter, groups, dropouts, num_channels=None):
  6.          return paddle.networks.img_conv_group(
  7.              input=ipt,
  8.              num_channels=num_channels,
  9.              pool_size=2,
  10.              pool_stride=2,
  11.              conv_num_filter=[num_filter] * groups,
  12.              conv_filter_size=3,
  13.              conv_act=paddle.activation.Relu(),
  14.              conv_with_batchnorm=True,
  15.              conv_batchnorm_drop_rate=dropouts,
  16.              pool_type=paddle.pooling.Max())

  17.      conv1 = conv_block(input, 64, 2, [0.3, 0], 3)
  18.      conv2 = conv_block(conv1, 128, 2, [0.4, 0])
  19.      conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
  20.      conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
  21.      conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])

  22.      drop = paddle.layer.dropout(input=conv5, dropout_rate=0.5)
  23.      fc1 = paddle.layer.fc(input=drop, size=512, act=paddle.activation.Linear())
  24.      bn = paddle.layer.batch_norm(
  25.          input=fc1,
  26.          act=paddle.activation.Relu(),
  27.          layer_attr=paddle.attr.Extra(drop_rate=0.5))
  28.      fc2 = paddle.layer.fc(input=bn, size=512, act=paddle.activation.Linear())
  29.      return fc2
复制代码

已有 1 人评分论坛币 收起 理由
Nicolle + 20 鼓励积极发帖讨论

总评分: 论坛币 + 20   查看全部评分

板凳
Nicolle 学生认证  发表于 2017-9-20 09:31:35
提示: 作者被禁止或删除 内容自动屏蔽

报纸
Nicolle 学生认证  发表于 2017-9-20 09:32:04
提示: 作者被禁止或删除 内容自动屏蔽

地板
Nicolle 学生认证  发表于 2017-9-20 09:32:47
提示: 作者被禁止或删除 内容自动屏蔽

7
Crsky7 发表于 2017-9-20 09:45:48
Paddle是个不错的计量经济学软件
已有 1 人评分论坛币 收起 理由
Nicolle + 20 鼓励积极发帖讨论

总评分: 论坛币 + 20   查看全部评分

8
tttt321 发表于 2017-9-20 10:05:46
Thanks 4 sharing!
已有 1 人评分论坛币 收起 理由
Nicolle + 20 鼓励积极发帖讨论

总评分: 论坛币 + 20   查看全部评分

9
joshwa001 发表于 2017-9-20 10:23:52
{:3_50:}
已有 1 人评分论坛币 收起 理由
Nicolle + 20 鼓励积极发帖讨论

总评分: 论坛币 + 20   查看全部评分

10
franky_sas 发表于 2017-9-20 11:19:14
已有 1 人评分论坛币 收起 理由
Nicolle + 20 鼓励积极发帖讨论

总评分: 论坛币 + 20   查看全部评分

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-22 01:11