楼主: 论文库
744 0

基于增量式GHSOM神经网络模型的入侵检测研究 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2017-9-20 06:20:04 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:传统的网络入侵检测方法利用已知类型的攻击样本以离线的方式训练入侵检测模型,虽然对已知攻击类型具有较高的检测率,但是不能识别网络上新出现的攻击类型。这样的入侵检测系统存在着建立系统的速度慢、模型更新代价高等不足,面对规模日益扩大的网络和层出不穷的攻击,缺乏自适应性和扩展性,难以检测出网络上新出现的攻击类型。文中对GHSOM(Growing Hierarchical Self-Organizing Maps)神经网络模型进行了扩展,提出了一种基于增量式GHSOM神经网络模型的网络入侵检测方法,在不破坏已学习过的知识的同时,对在线检测过程中新出现的攻击类型进行增量式学习,实现对入侵检测模型的动态扩展。作者开发了一个基于增量式GHSOM神经网络模型的在线网络入侵检测原型系统,在局域网环境下开展了在线入侵检测实验。实验结果表明增量式GHSOM入侵检测方法具有动态自适应性,能够实现在线检测过程中对GHSOM模型的动态更新,而且对于网络上新出现的攻击类型,增量式GHSOM算法与传统GHSOM算法的检测率相当。

原文链接:http://www.cqvip.com/QK/90818X/201405/49658536.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:SOM神经网络 神经网络模型 网络模型 神经网络 入侵检测 增量式学习 生长型分层自组织映射 入侵检测 神经网络 信息安全

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-1 04:35