楼主: DL-er
880 0

基于维基百科社区挖掘的词语语义相似度计算 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2017-9-24 00:40:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:词语语义相似度计算在自然语言处理如词义消歧、语义信息检索、文本自动分类中有着广泛的应用。不同于传统的方法,提出的是一种基于维基百科社区挖掘的词语语义相似度计算方法。本方法不考虑单词页面文本内容,而是利用维基百科庞大的带有类别标签的单词页面网信息,将基于主题的社区发现算法HITS应用到该页面网,获取单词页面的社区。在获取社区的基础上,从3个方面来考虑两个单词间的语义相似度:(1)单词页面语义关系;(2)单词页面社区语义关系;(3)单词页面社区所属类别的语义关系。最后,在标准数据集WordSimilarity-353上的实验结果显示,该算法具有可行性且略优于目前的一些经典算法;在最好的情况下,其Spearman相关系数达到0.58。

原文链接:http://www.cqvip.com/QK/92817X/201604/668952505.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:维基百科 相似度 Similarity spearman similar 语义相似度 社区发现 维基百科

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 21:04