楼主: AIworld
605 0

融合直推式学习和语义理解的词语倾向性识别 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2017-9-26 23:20:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:目前词语情感倾向性识别研究主要分为机器学习和语义理解,机器学习不能很好地识别通用领域词语,语义理解又存在准确率和召回率不够高的问题,因此文中提出了一种融合直推式学习和语义理解的词语倾向性识别方法。首先对HowNet知识库体系进行改进,在已有的四种义原的基础上,提出第五义原—情感义原;然后将第五义原手工融入到HowNet知识库中,再在此基础上提出词语情感相似度计算方法计算词语的情感值;最后将该方法融合直推式学习以判定词语情感倾向性。通过实验结果表明,与支持向量机和原语义理解方法相比,该方法在识别情感词上取得了较好的效果。

原文链接:http://www.cqvip.com/QK/97969X/201601/667697772.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:倾向性 cqvip 支持向量机 机器学习 交流学习 词语倾向性识别 机器学习 语义理解 意见挖掘 情感义原

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-4 07:32