楼主: 论文库
663 0

基于词语关系的词向量模型 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2017-9-28 11:20:06 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:词向量能够以向量的形式表示词的意义,近来许多自然语言处理应用中已经融入词向量,将其作为额外特征或者直接输入以提升系统性能。然而,目前的词向量训练模型大多基于浅层的文本信息,没有充分挖掘深层的依存关系。词的词义体现在该词与其他词产生的关系中,而词语关系包含关联单位、关系类型和关系方向三个属性,因此,该文提出了一种新的基于神经网络的词向量训练模型,它具有三个顶层,分别对应关系的三个属性,更合理地利用词语关系对词向量进行训练,借助大规模未标记文本,利用依存关系和上下文关系来训练词向量。将训练得到的词向量在类比任务和蛋白质关系抽取任务上进行评价,以验证关系模型的有效性。实验表明,与skipgram模型和CBOW模型相比,由关系模型训练得到的词向量能够更准确地表达词语的语义信息。

原文链接:http://www.cqvip.com/QK/96983X/201703/672685403.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:词向量 cqvip 关系模型 gram HTML 词表示 词嵌入 词向量 神经网络 关系模型

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 16:38