楼主: 人工智能-AI
525 0

采用改进重采样和BRF方法的定义抽取研究 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2017-10-27 23:00:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:为了从专业领域语料中发现并获取所有的专业术语定义,该文提出了使用分类方法进行专业术语定义抽取的方法。该文采用一种基于实例距离分布信息的过采样方法,将其与随机欠采样方法结合用以建立平衡训练语料,并使用BRF(Balanced Random Forest)方法来获得C4.5决策树的聚合分类结果。该方法获得了最好65%的F1-measure成绩和78%的F2-measure成绩,超过了仅使用BRF方法取得的成绩。

原文链接:http://www.cqvip.com//QK/96983X/201103/37816755.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Balanced Measure balance random Forest 自然语言处理 术语定义 定义抽取 文本分类 重采样

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-2 04:49