楼主: 论文库
1080 0

强化学习算法中启发式回报函数的设计及其收敛性分析 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2017-10-28 11:00:03 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:回报函数设计的好与坏对学习系统性能有着重要作用,按回报值在状态-动作空间中的分布情况,将回报函数的构建分为两种形式:密集函数和稀疏函数,分析了密集函数和稀疏函数的特点.提出启发式回报函数的基本设计思路,利用基于保守势函数差分形式的附加回报函数,给学习系统提供更多的启发式信息,并对算法的最优策略不变性和迭代收敛性进行了证明.启发式回报函数能够引导学习,加快学习进程,从而可以实现强化学习在实际大型复杂系统应用中的实时控制和调度.

原文链接:http://www.cqvip.com//QK/92817X/200503/15215080.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:学习算法 启发式 cqvip 学习系统 HTML 强化学习算法 启发式回报函数 收敛性 马尔可夫决策过程 机器学习

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 02:40