楼主: a智多星
956 0

融合迁移学习的中文命名实体识别 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2017-10-30 20:40:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:命名实体识别是自然语言处理研究领域中的一项很重要的基础性任务,是实体关系抽取和事件抽取等高层任务重要基石.如何在缺乏标注语料或只有少量标注语料条件下,提高命名实体识别的性能是自然语言处理领域的一个重要研究方向.针对这一问题,提出一种基于实例的迁移学习算法——TLNER_Ada Boost.该方法通过自动调整训练集中实例样本的权重和计算辅助训练样本的迁移能力来提高训练语料质量,并选取采用不完全标注语料的自学习方法和采用完全标注语料的基于条件随机场的方法来对该方法进行实验对比分析.经实验对比分析得知,本文方法在提高命名实体识别的准确率、召回率和F值的同时,大大降低了人工标注语料的工作量.

原文链接:http://www.cqvip.com//QK/95659X/201702/671176675.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:学习的 cqvip boost 自然语言 对比分析 命名实体识别 迁移学习 机器学习 TLNER_Ada Boost

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 00:06