又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。
中文名
数学分析
外文名
Mathematical Analysis
所属学科
数学
研究内容
函数、极限、微积分、级数
理论基础
极限理论
简介
数学分析的主要内容是微积分学,微积分学的理论基础是极限理论,极限理论的理论基础是实数理论。微积分学是微分学(Differential Calculus)和积分学(Integral Calculus)的统称,英语简称Calculus,意为计算,这是因为早期微积分主要用于天文、力学、几何中的计算问题。后来人们也将微积分学称为分析学(Analysis),或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问。
早期的微积分,已经被数学家和天文学家用来解决了大量的实际问题,但是由于无法对无穷小概念作出令人信服的解释,在很长的一段时间内得不到发展,有很多数学家对这个理论持怀疑态度,柯西(Cauchy)和后来的魏尔斯特拉斯(weierstrass)完善了作为理论基础的极限理论,摆脱了“要多小有多小”、“无限趋向”等对模糊性的极限描述,使用精密的数学语言来描述极限的定义,使微积分逐渐演变为逻辑严密的数学基础学科,被称为“Mathematical Analysis”,中文译作“数学分析”。
实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起了严密的数学分析理论体系。
发展历史
早期发展
在古希腊数学的早期,数学分析的结果是隐含给出的。比如,芝诺的两分法悖论就隐含了几何级数的和。再后来,古希腊数学家如欧多克索斯和阿基米德使数学分析变得更加明确,但还不是很正式。他们在使用穷竭法去计算区域和固体的面积和体积时,使用了极限和收敛的概念。在古印度数学的早期,12世纪的数学家婆什迦罗第二给出了导数的例子。
阿基米德
早期创立
数学分析的创立始于17世纪以牛顿(Newton,I.)和莱布尼茨(Leibniz,G.W)为代表的开创性工作,而完成于19世纪以柯西(Cauchy)和魏尔斯特拉斯(Weierstrass)为代表的奠基性工作。从牛顿开始就将微积分学及其有关内容称为分析。其后,微积分学领域不断扩大,但许多数学家还是沿用这一名称。时至今日,许多内容虽已从微积分学中分离出去,成了独立的学科,而人们仍以分析统称之。数学分析亦简称分析。
研究对象
数学分析的研究对象是函数,它从局部和整体这两个方面研究函数的基本性态,从而形成微分学和积分学的基本内容。微分学研究变化率等函数的局部特征,导数和微分是它的主要概念,求导数的过程就是微分法。围绕着导数与微分的性质、计算和直接应用,形成微分学的主要内容。积分学则从总体上研究微小变化(尤其是非均匀变化)积累的总效果,其基本概念是原函数(反导数)和定积分,求积分的过程就是积分法。积分的性质、计算、推广与直接应用构成积分学的全部内容。牛顿和莱布尼茨对数学的杰出贡献就在于,他们在1670年左右,总结了求导数与求积分的一系列基本法则,发现了求导数与求积分是两种互逆的运算,并通过后来以他们的名字命名的著名公式—[1]牛顿-莱布尼茨公式—反映了这种互逆关系,从而使本来各自独立发展的微分学和积分学结合而成一门新的学科—微积分学。又由于他们及一些后继学者(特别是欧拉(Euler))的贡献,使得本来仅为少数数学家所了解,只能相当艰难地处理一些个别具体问题的微分与积分方法,成为一种常人稍加训练即可掌握的近于机械的方法,打开了把它广泛应用于科学技术领域的大门,其影响所及,难以估量。因此,微积分的出现与发展被认为是人类文明史上划时代的事件之一。与积分相比,无穷级数也是微小量的叠加与积累,只不过取离散的形式(积分是连续的形式)。因此,在数学分析中,无穷级数与微积分从来都是密不可分和相辅相成的。在历史上,无穷级数的使用由来已久,但只在成为数学分析的一部分后,才得到真正的发展和广泛应用。


雷达卡



京公网安备 11010802022788号







