楼主: 人工智能-AI
611 0

加权成对约束度量学习在说话人识别中的应用 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2017-12-28 12:00:04 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:I-vector说话人识别系统常用距离来衡量说话人语音间的相似度。加权成对约束度量学习算法(WPCML)利用成对训练样本的加权约束信息训练一个用于计算马氏距离的度量矩阵。该度量矩阵表示的样本空间中,同类样本间的距离更小,非同类样本间的距离更大。在美国国家标准技术局(NIST)2008年说话人识别评测数据库(SRE08)的实验结果表明,WPCML算法训练度量矩阵用于马氏距离相似度打分,比用余弦距离相似度打分的性能更好。选择训练样本对方法用于构造度量学习训练样本集能进一步提高系统实验性能,并优于目前最流行的PLDA分类器。

原文链接:http://www.cqvip.com//QK/91690X/201611/668993519.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Vector cqvip 马氏距离 NIST HTML 说话人识别 马氏距离 距离度量学习 机器学习 模式识别

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-25 06:15