楼主: a智多星
813 0

一种基于不平衡数据的聚类抽样方法 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-1-1 06:40:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:许多研究表明传统分类器在对海量不平衡数据分类时偏向多数类规则,因此,会导致少数类实例被错误判断为多数类.针对上述问题,提出了一种基于分解求解的学习分类算法.算法先对样本数据进行聚类,在聚类的基础上多次根据权值对数据集进行欠抽样,产生平衡的数据集,对每个平衡数据集进行验证同时提高误判样本的权值.综合考虑每个基分类器的错误率作为分类器的权值,选择分类效果较好的基分类器进行加权集成.实验表明算法有较高的少数类正确率以及少数类F度量,同时可以大幅减少训练集数量.

原文链接:http://www.cqvip.com//QK/95251X/201502/664450355.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:抽样方法 不平衡 cqvip HTML HTTP 机器学习 不平衡数据 集成学习 欠抽样

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-25 10:20