楼主: 论文库
606 0

一种改进离散度的特征选择方法 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2018-1-1 15:00:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:降维在机器学习中起着至关重要的作用。而降维的方法主要有两类:特征选择和特征提取。离散度方法是特征选择中常用的一种方法,通过计算每个特征的离散度来选择特征,被选择的特征一般都具有较高的离散度值。但是离散度的计算没有考虑到特征间的相互影响。通过改进离散度的计算,不单考虑到类间相同特征对离散度的影响,还考虑到不同特征之间的离散度影响。在UCI数据集上的实验证明,改进离散度的特征选择具有较好的性能。

原文链接:http://www.cqvip.com//QK/97941X/201207/42504256.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:特征选择 cqvip 学术交流 相互影响 HTML 特征选择 机器学习 离散度 模式分类 特征提取

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-26 14:50