楼主: AIworld
570 0

基于HMM/BP混合模型的文本信息抽取研究 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-1-1 17:40:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:作为自然语言处理的一个分支,文本信息抽取成为了提取大量文本信息中有用信息的重要手段。介绍了目前在信息抽取领域中应用广泛的两种技术方法:HMM和BP网络模型,分析了各自的优缺点,并在此基础上提出了一种基于两者的混合模型,该混合模型通过BP网络优秀的分类甄别能力来弥补HMM在分类方面的不足,而通过HMM强大的时域建模能力来弥补BP网络建模能力弱的问题,因此该模型具有强大的建模能力、分类性以及适应性强等特点。实验证明,相比传统的HMM以及BP网络模型,该混和模型在精确度和召回率上有了10%-15%的提高。

原文链接:http://www.cqvip.com//QK/97969A/201105/37727477.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:混合模型 HMM cqvip bp网络 网络模型 信息抽取 隐马尔可夫模型 Bp网络

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-26 07:41