楼主: 论文库
499 0

基于Web知识的无监督英文目录标签消歧 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2018-1-2 11:20:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:词义消歧,作为自然语言处理领域最具挑战性的任务之一,目前正面临着知识获取瓶颈(Knowledge Acquisition Bottle-neck)的阻碍。目录标签消歧,作为词义消歧的又一崭新的应用领域,是轻量级本体学习(Lightweight Ontology Learning)中十分重要的一个环节。旨在探索一种基于Web知识(不受知识获取瓶颈制约)并应用于目录标签消歧的词义消歧方法。其主要思想为:首先,利用Web知识(Web搜索引擎)和WordNet等外部资源,将待消歧词t的上下文c及n个候选词义s1…sn扩展为各自的向量形式,并提出的一种tf-idf变体(条件tf-idf)来计算向量中的分量值。之后,又提出一种新颖的混合消歧模型,综合考虑各候选词义与待消歧词上下文的相关度及候选词义先验分布这两个因素进行消歧。据了解,类似做法在基于Web的词义消歧中还未出现过。在实验中,在网页目录DMOZ的一个子集(共1100个待消歧词)上进行了实验。系统以100%的召回率达到83.40%的准确率,高于基线准确率(单纯根据词义先验分布消歧)73.37%达10个百分点。

原文链接:http://www.cqvip.com//QK/90976X/201009/35321691.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:WEB Lightweight Acquisition knowledge Learning 词义消岐 基于Web知识 无监督 轻量级本体

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-16 10:45