楼主: 人工智能-AI
518 0

使用过训练提升词性标注依存句法联合模型的速度 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2018-1-2 20:00:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:词性标注和依存句法分析是自然语言处理领域中句子级别基本分析技术的两个重要任务,一般来说词性标注是依存句法分析的一个前提条件。基于联合分析的方法将这两个任务在一个统一的统计模型中联合处理能避免错误传播这类问题的发生,因此这种联合模型能取得比较好的性能。但是这种联合模型会带来算法上的时间复杂度的额外开销,因此导致联合分析的方法,速度非常慢。本文提出一种基于过训练的方法,通过极少量的性能损失,使得联合模型的解码速度提升了6倍。

原文链接:http://www.cqvip.com//QK/94259A/201404/661995456.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:cqvip 联合分析 HTML HTTP 大家共享 词性标注 依存句法分析 联合模型 过训练

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-21 06:07