楼主: DL-er
512 0

加权抽样对相似性学习算法的改进效果研究 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2018-1-4 19:20:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:当今诸多聚类算法需要通过计算样本间距离来得到样本相似性。因此对这类算法而言,距离的计算方法尤为重要。对部分现有距离度量学习或相似性学习算法进行研究后可以发现,多数算法在选择学习样本的过程中,都采用了重复随机抽样的方式。这一抽样方式使所有训练节点都有均等概率用于度量或相似性学习,但因样本位置不同,对分类算法而言样本的分类难度也不同。如果能针对较难分类的样本进行着重学习,并适当减少对易分类点的学习时间,便能提高学习过程的效率性,减少学习过程的时间。节约时间成本,在大数据时代有不容忽视的意义。

原文链接:http://www.cqvip.com//QK/92817X/2014S1/74837465504849528349485754.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:学习算法 相似性 大数据时代 cqvip 学术交流 相似性度量 距离度量 加权抽样 机器学习 k-NN

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-27 07:15