楼主: a智多星
426 0

双流机场低能见度天气预报方法研究 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-1-8 11:20:03 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:在信息量较大,而预报对象与预报因子的关系叉不清楚的状况下,智能机器学习方法是解决这类问题的较好手段。利用1997-2001年成都站的常规探空资料和双流机场的地面观测资料,使用支持向量机(Support Vector Machines,简称SVM)方法,选取多种核函数进行双流机场低能见度天气的预报建模试验。测试结果表明:以径向基函数和拉普拉斯函数构造的SVM预报模型实验效果最好,Ts评分分别为0.287和0.292,远高于双流机场低能见度天气出现的频率(0.155)。试验结果还表明:以径向基函数构造的SVM预报模型空报较多,漏报较少;而以拉普拉斯函数构造的SVM预报模型空报较少,漏报较多。因此,如果强调模型对低能见度天气预报的准确性,则应采用以拉普拉斯函数构造的预报模型,如果强调对低能见度天气的预防性,则应采用以径向基函数构造的预报模型。

原文链接:http://www.cqvip.com//QK/97586X/200601/21263307.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:方法研究 天气预报 双流机场 能见度 Machines 低能见度天气 支持向量机 预报方法

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-30 05:26