楼主: a智多星
720 0

基于小波核LS—SVM的网络流量预测 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-1-10 03:19:59 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:网络流量预测对大规模网络管理、规划、设计具有重要意义.支持向量机方法是近年来发展起来的新型机器学习算法,用于解决高度非线性分类及回归问题.介绍了基于小波核最小二乘支持向量机的网络流量预测方法,利用小波核函数的多分辨特性提高了支持向量机的非线性建模能力.通过对实测网络流量数据的学习,对未来网络流量进行预测.实验结果表明,取得了较好的预测效果.

原文链接:http://www.cqvip.com//QK/97969X/200512/20661816.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:SVM 网络流 机器学习算法 支持向量机 cqvip 支持向量机 最小二乘支持向量机 流量预测 小波

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-21 21:08