楼主: a智多星
823 0

适用于多种监督模型的特征选择方法研究 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-1-11 23:20:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:特征选择是模式识别、机器学习、数据挖掘等领域的重要问题之一,近年来已成为研究热点,并涌现出大量的用于选择特征的算法.现有的特征选择算法大多仅面向某一特定领域,其适用范围有限.采用基于Hilbert-Schmidt相关性标准的核方法衡量特征子集与目标对象间的相关程度,提出了一个适用性更广的特征选择方法FSM-HSIC,能较好地统一有监督、半监督和无监督3种模型下的特征选择过程,而且可从核方法的角度对整个过程进行抽象地描述,并深入理解现有的一些算法.同时以该方法为基础针对交互特征选择问题设计了新颖的FSI算法.理论分析和大量真实与仿真实验结果表明,与若干特征选择算法相比较,提出的算法具有良好的效率和稳定性,FSM-HSIC方法对新算法的产生具有重要的指导意义.

原文链接:http://www.cqvip.com//QK/94913X/201009/35181880.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:方法研究 特征选择 schmidt hilbert cqvip 数据挖掘 模式识别 特征选择 核函数方法 交互特征

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-29 18:06