楼主: 人工智能-AI
574 0

基于LS—SVM的测井物性参数的预测方法 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2018-1-14 10:00:03 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:支持向量机(SVM)是近年来发展起来的一种通用的机器学习方法,在小样本数据的拟合中已获得了很好的效果。采用新型的支持向量机——最小二乘支持向量机(LJS—SVM)对孔隙度、渗透率和饱和度进行了预测,获得了满意的结果。该方法易于使用,很少受不确定性因素的影响,并具有较强的信息整合能力以及更高的预测准确性。

原文链接:http://www.cqvip.com//QK/91690X/200723/25148151.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:预测方法 SVM 支持向量机 cqvip HTTP 最小二乘支持向量回归机 孔隙度 渗透率 饱和度 预测

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-24 11:51