楼主: 人工智能-AI
534 0

基于小波和径向基函数神经网络的滚动轴承故障模式识别 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2018-1-19 07:20:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:利用振动信号对滚动轴承的状态监测和故障诊断是工程中面临的难题之一,传统的基于平稳信号假设的方法不适于故障轴承的非平稳信号,有效提取故障轴承的故障特征和将故障特征准确分类是解决问题的两个关键.小波分析具有良好的时-频局部化特征,因而非常适于对瞬态或时变信号进行分类, 而人工神经网络可完成非线性系统辨识和模式分类.利用上述原理根据滚动轴承振动信号的频域变化特征,首先采用小波包分析对其建立频域能量特征向量,然后利用径向基函数神经网络完成滚动轴承故障模式的识别.试验结果表明,系统不仅能够检测到轴承故障的存在,而且能够比较准确地识别轴承的内外环故障模式,可以满足工程中的需要.

原文链接:http://www.cqvip.com//QK/90712X/200406/11097064.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:滚动轴承 模式识别 神经网络 神经网 人工神经网络 滚动轴承 振动信号 小波包 特征向量 径向基函数

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-5 21:49