楼主: kevinchen24
2065 2

Oxford 统计学讲义 [推广有奖]

  • 1关注
  • 5粉丝

VIP

已卖:2375份资源

博士生

56%

还不是VIP/贵宾

-

威望
0
论坛币
7860 个
通用积分
2.2450
学术水平
12 点
热心指数
12 点
信用等级
7 点
经验
4300 点
帖子
137
精华
0
在线时间
447 小时
注册时间
2008-6-10
最后登录
2023-10-9

楼主
kevinchen24 在职认证  发表于 2009-11-17 21:05:38 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Statistical TheoryProf. Gesine Reinert

Aim: To review and extend the main ideas in Statistical Inference, both
from a frequentist viewpoint and from a Bayesian viewpoint. This course
serves not only as background to other courses, but also it will provide a
basis for developing novel inference methods when faced with a new situation
which includes uncertainty. Inference here includes estimating parameters
and testing hypotheses.




Overview
• Part 1: Frequentist Statistics
– Chapter 1: Likelihood, sufficiency and ancillarity. The Factorization
Theorem. Exponential family models.
– Chapter 2: Point estimation. When is an estimator a good estimator?
Covering bias and variance, information, efficiency. Methods
of estimation: Maximum likelihood estimation, nuisance parameters
and profile likelihood; method of moments estimation. Bias
and variance approximations via the delta method.
– Chapter 3: Hypothesis testing. Pure significance tests, significance
level. Simple hypotheses, Neyman-Pearson Lemma. Tests
for composite hypotheses. Sample size calculation. Uniformly
most powerful tests, Wald tests, score tests, generalized likelihood
ratio tests. Multiple tests, combining independent tests.
– Chapter 4: Interval estimation. Confidence sets and their connection
with hypothesis tests. Approximate confidence intervals.
Prediction sets.
– Chapter 5: Asymptotic theory. Consistency. Asymptotic normality
of maximum likelihood estimates, score tests. Chi-square
approximation for generalized likelihood ratio tests. Likelihood
confidence regions. Pseudo-likelihood tests.

• Part 2: Bayesian Statistics
– Chapter 6: Background. Interpretations of probability; the Bayesian
paradigm: prior distribution, posterior distribution, predictive
distribution, credible intervals. Nuisance parameters are easy.
-Chapter 7: Bayesian models. Sufficiency, exchangeability. De
Finetti’s Theorem and its intepretation in Bayesian statistics.
– Chapter 8: Prior distributions. Conjugate priors. Noninformative
priors; Jeffreys priors, maximum entropy priors posterior summaries.
If there is time: Bayesian robustness.
– Chapter 9: Posterior distributions. Interval estimates, asymptotics
(very short).

• Part 3: Decision-theoretic approach:
– Chapter 10: Bayesian inference as a decision problem. Decision
theoretic framework: point estimation, loss function, decision
rules. Bayes estimators, Bayes risk. Bayesian testing, Bayes
factor. Lindley’s paradox. Least favourable Bayesian answers.
Comparison with classical hypothesis testing.
– Chapter 11: Hierarchical and empirical Bayes methods. Hierarchical
Bayes, empirical Bayes, James-Stein estimators, Bayesian
computation.
• Chapter 12: Principles of inference. The likelihood principle. The
conditionality principle. The stopping rule principle.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Oxford Ford 统计学 For distribution 讲义 统计学 Oxford

Statistical Theory.rar
下载链接: https://bbs.pinggu.org/a-461046.html

504.64 KB

需要: 20 个论坛币  [购买]

沙发
359015537an(未真实交易用户) 发表于 2009-11-17 21:07:22
好帖子 但是太贵了 能不能便宜点啊 版主!
自胜者强

藤椅
kevinchen24(未真实交易用户) 在职认证  发表于 2009-11-17 21:44:22
急需赚些金币,望谅解。

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-5 16:36