楼主: 人工智能-AI
599 0

基于数据挖掘和证据理论的综合评价的研究 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2018-1-20 23:59:59 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:在综合评价中存在2个问题:(1)对于大规模的评价对象,由于分类、优化、搜索等操作,使其时间和空间复杂度爆炸性增长,导致大量内存被占用,从而他们既要存储在数据库或数据仓库中,又要及时以成果形式放在桌面上,导致现有方法难以给出合理、科学的评价结果;(2)同类中的数据比较接近,可区分度小,评价对象难以精确划分.从结果的角度,综合评价可分为分类评价、排序评价、分类排序评价.针对上述问题,基于数据挖掘理论,选择适当的挖掘算法,并同时根据DS理论实现的信息融合技术,提出了一种新的分类排序评价方法,其前一部分利用数据挖掘做分类评价,后一部分利用证据推理做排序评价.实例的运算结果表明,面对数据库评价对象,数据挖掘技术将其分成了不同层次的类;经信息融合后,得到了精确的排序评价结果;评价目标的可区分度明显增大,不确定度大大降低;可信度增强,评价结果得到了改善.

原文链接:http://www.cqvip.com//QK/97360A/200517/20029146.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:数据挖掘 综合评价 数据挖掘技术 cqvip 信息融合 综合评价 数据挖掘 证据理论 信息融合

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-8 06:35