楼主: 人工智能-AI
473 0

基于Radviz及其优化的可视化故障诊断方法 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2018-1-24 00:40:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:阐述了Radviz(radial visualization)技术,即将高维数据样本非线性的投影到二维目标空间。Vizrank优化能够从数以万计的投影图中评价和确定最好的投影方式;能够快速找到容易被领域专家认可的可视化模型,只需少量输入变量(2~7)就能够做到数据的可视化,并且有很好的分类效果。在TEP仿真系统中的应用,表明了Radviz及其优化的可视化故障诊断方法可以将正常与故障状态有效地分开。该可视化故障诊断方法具有简单而不失精确性、易于利用领域专家知识、诊断结果直观形象并容易理解等显著优点。

原文链接:http://www.cqvip.com//QK/93231X/200903/1000631794.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:故障诊断 可视化 Visual radial cqvip 故障诊断 Radviz图 Vizrank 机器学习 Tennessee

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-20 19:33