楼主: AIworld
895 0

一种基于M-Bisearch的最大频繁项集挖掘算法研究 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-1-24 11:20:03 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:大数据分析的理论核心就是数据挖掘,关联规则挖掘算法是数据挖掘的重要分支,其包含频繁项集的生成和关联规则的产生两个步骤,频繁项集的生成过程中算法开销占据很大成本。从最大频繁项集的性质入手,在改变数据存储结构的基础上采用M-Bisearch的思想,通过对存储空间进行压缩来减少扫描次数和降低支持度计算开销,从而达到提升算法执行效率的目的。实验表明,改进算法在处理中长模式的频繁项集挖掘问题时具有明显的优越性。

原文链接:http://www.cqvip.com//QK/98180B/201605/671339983.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:search ARCH ear BIS ARC 机器学习 数据挖掘 关联规则 频繁项集 最大频繁项集

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-4 01:50